【OR-notes】敏感度分析

本文探讨了优化问题中的扰动与敏感性分析,包括全局分析,即在强对偶条件下,参数变化对最优值的影响;以及局部敏感性分析,通过导数确定关键变量的响应。重点讨论了参数扰动对最优解和最优值的影响,以及如何通过双优化问题来理解这种敏感性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Perturbation & Sensitivity analysis

min ⁡ f 0 ( x ) s . t . f i ( x ) ≤ 0 , i = 1 , 2 , … , m h i ( x ) = 0 , i = 1 , 2 , … , p \begin{aligned} &\min & f_0(x)\\ &s.t.& f_i(x)\leq 0, i=1, 2, \dots, m\\ &&h_i(x)=0, i=1, 2, \dots, p \end{aligned} mins.t.f0(x)fi(x)0,i=1,2,,mhi(x)=0,i=1,2,,p

Add perturbation:
min ⁡ f 0 ( x ) s . t . f i ( x ) ≤ u i , i = 1 , … , m h i ( x ) = v i , i = 1 , 2 , … , p \begin{aligned} &\min &f_0(x)\\ &s.t. & f_i(x)\leq u_i, i=1, \dots, m\\ &&h_i(x)=v_i, i=1, 2, \dots, p \end{aligned} mins.t.f0(x)fi(x)ui,i=1,,mhi(x)=vi,i=1,2,,p
The dual problem is:
max ⁡ g ( λ , ν ) − u ′ λ − v ′ ν s . t . λ ≥ 0 \begin{aligned} &\max &g(\lambda, \nu)-u'\lambda-v'\nu\\ &s.t. &\lambda \geq 0 \end{aligned} maxs.t.g(λ,ν)uλvνλ0
x x x is primal variable, u , v u, v u,v are parameters, p ∗ ( u , v ) p^*(u, v) p(u,v) is the optimal value as a function of u , v u, v u,v.

global analysis

Assuming that strong duality hold for u = 0 , v = 0 u=0, v=0 u=0,v=0, λ ∗ , ν ∗ \lambda^*, \nu^* λ,ν are dual optimal for unperturbed problem, that is
p ∗ ( u , v ) ≥ g ( λ ∗ , ν ∗ ) − u ′ λ ∗ − v ′ ν ∗ = p ∗ ( 0 , 0 ) − u ′ λ ∗ − v ′ ν ∗ p^*(u, v)\geq g(\lambda^*, \nu^*)-u'\lambda^*-v'\nu^*=p^*(0, 0)-u'\lambda^*-v'\nu^* p(u,v)g(λ,ν)uλvν=p(0,0)uλvν
Sensitivity analysis

  1. If λ \lambda λ is large, u i < 0 u_i<0 ui<0, p ∗ p^* p increase greatly.
  2. If λ \lambda λ is small, u i > 0 u_i>0 ui>0, p ∗ p^* p does not decrease too much.
  3. If ν i \nu_i νi is large, v i < 0 v_i<0 vi<0 or If ν i < 0 \nu_i<0 νi<0 is large, v i > 0 v_i>0 vi>0, p ∗ p^* p increase greatly.
  4. If ν i ∗ > 0 \nu_i^*>0 νi>0 small and v i > 0 v_i>0 vi>0 or If ν i ∗ < 0 \nu_i^*<0 νi<0 small and v i < 0 v_i<0 vi<0, p ∗ p^* p does not decrease too much.

local sensitivity

If p ∗ ( u , v ) p^*(u, v) p(u,v) is derivative at ( 0 , 0 ) (0, 0) (0,0), that is,
λ i ∗ = ∂ p ∗ ( 0 , 0 ) ∂ u i ν i ∗ = ∂ p ∗ ( 0 , 0 ) ∂ v i \begin{aligned} &\lambda_i^*=\frac{\partial p^*(0, 0)}{\partial u_i}\\ &\nu_i^*=\frac{\partial p^*(0, 0)}{\partial v_i} \end{aligned} λi=uip(0,0)νi=vip(0,0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值