Perturbation & Sensitivity analysis
min f 0 ( x ) s . t . f i ( x ) ≤ 0 , i = 1 , 2 , … , m h i ( x ) = 0 , i = 1 , 2 , … , p \begin{aligned} &\min & f_0(x)\\ &s.t.& f_i(x)\leq 0, i=1, 2, \dots, m\\ &&h_i(x)=0, i=1, 2, \dots, p \end{aligned} mins.t.f0(x)fi(x)≤0,i=1,2,…,mhi(x)=0,i=1,2,…,p
Add perturbation:
min
f
0
(
x
)
s
.
t
.
f
i
(
x
)
≤
u
i
,
i
=
1
,
…
,
m
h
i
(
x
)
=
v
i
,
i
=
1
,
2
,
…
,
p
\begin{aligned} &\min &f_0(x)\\ &s.t. & f_i(x)\leq u_i, i=1, \dots, m\\ &&h_i(x)=v_i, i=1, 2, \dots, p \end{aligned}
mins.t.f0(x)fi(x)≤ui,i=1,…,mhi(x)=vi,i=1,2,…,p
The dual problem is:
max
g
(
λ
,
ν
)
−
u
′
λ
−
v
′
ν
s
.
t
.
λ
≥
0
\begin{aligned} &\max &g(\lambda, \nu)-u'\lambda-v'\nu\\ &s.t. &\lambda \geq 0 \end{aligned}
maxs.t.g(λ,ν)−u′λ−v′νλ≥0
x
x
x is primal variable,
u
,
v
u, v
u,v are parameters,
p
∗
(
u
,
v
)
p^*(u, v)
p∗(u,v) is the optimal value as a function of
u
,
v
u, v
u,v.
global analysis
Assuming that strong duality
hold for
u
=
0
,
v
=
0
u=0, v=0
u=0,v=0,
λ
∗
,
ν
∗
\lambda^*, \nu^*
λ∗,ν∗ are dual optimal for unperturbed problem, that is
p
∗
(
u
,
v
)
≥
g
(
λ
∗
,
ν
∗
)
−
u
′
λ
∗
−
v
′
ν
∗
=
p
∗
(
0
,
0
)
−
u
′
λ
∗
−
v
′
ν
∗
p^*(u, v)\geq g(\lambda^*, \nu^*)-u'\lambda^*-v'\nu^*=p^*(0, 0)-u'\lambda^*-v'\nu^*
p∗(u,v)≥g(λ∗,ν∗)−u′λ∗−v′ν∗=p∗(0,0)−u′λ∗−v′ν∗
Sensitivity analysis
- If λ \lambda λ is large, u i < 0 u_i<0 ui<0, p ∗ p^* p∗ increase greatly.
- If λ \lambda λ is small, u i > 0 u_i>0 ui>0, p ∗ p^* p∗ does not decrease too much.
- If ν i \nu_i νi is large, v i < 0 v_i<0 vi<0 or If ν i < 0 \nu_i<0 νi<0 is large, v i > 0 v_i>0 vi>0, p ∗ p^* p∗ increase greatly.
- If ν i ∗ > 0 \nu_i^*>0 νi∗>0 small and v i > 0 v_i>0 vi>0 or If ν i ∗ < 0 \nu_i^*<0 νi∗<0 small and v i < 0 v_i<0 vi<0, p ∗ p^* p∗ does not decrease too much.
local sensitivity
If
p
∗
(
u
,
v
)
p^*(u, v)
p∗(u,v) is derivative at
(
0
,
0
)
(0, 0)
(0,0), that is,
λ
i
∗
=
∂
p
∗
(
0
,
0
)
∂
u
i
ν
i
∗
=
∂
p
∗
(
0
,
0
)
∂
v
i
\begin{aligned} &\lambda_i^*=\frac{\partial p^*(0, 0)}{\partial u_i}\\ &\nu_i^*=\frac{\partial p^*(0, 0)}{\partial v_i} \end{aligned}
λi∗=∂ui∂p∗(0,0)νi∗=∂vi∂p∗(0,0)