【OR-notes】互补松弛性

Complementary slackness

Assuming that the strong duality holds, and x ∗ x^* x is the primal optimal, and ( x ∗ , v ∗ ) (x^*, v^*) (x,v) is dual optimal. Then f 0 ( x ∗ ) = g ( x ∗ , v ∗ ) = inf ⁡ x ∈ D ( f 0 ( x ) + ∑ i = 1 m λ i ∗ f i ( x ) + ∑ i = 1 p ν i ∗ h i ( x ) ≤ f 0 ( x ∗ ) f_0(x^*)=g(x^*, v^*)=\inf_{x\in D} (f_0(x)+\sum_{i=1}^m\lambda_i^*f_i(x)+\sum_{i=1}^p \nu_i^* h_i(x)\leq f_0(x^*) f0(x)=g(x,v)=infxD(f0(x)+i=1mλifi(x)+i=1pνihi(x)f0(x).
when the = holds, we have
∑ i = 1 m λ i ∗ f i ( x ∗ ) = 0 \sum_{i=1}^m \lambda_i^*f_i(x^*)=0 i=1mλifi(x)=0

KKT conditions

  • primal inequal constraints: f i ( x ) ≤ 0 , i = 1 , 2 , … , m f_i(x)\leq 0, i=1, 2, \dots, m fi(x)0,i=1,2,,m.
  • primal equal constraints: h i ( x ) = 0 , i = 1 , 2 , … , p h_i(x)=0, i=1, 2, \dots, p hi(x)=0,i=1,2,,p.
  • complementary slackness: λ i f i ( x ) = 0 , i = 1 , 2 , … , m \lambda_if_i(x)=0, i=1,2,\dots, m λifi(x)=0,i=1,2,,m.
  • ∇ f 0 ( x ) + ∑ λ i ∇ f i ( x ) + ν i ∇ h i ( x ) = 0 \nabla f_0(x)+\sum \lambda_i\nabla f_i(x)+\nu_i\nabla h_i(x)=0 f0(x)+λifi(x)+νihi(x)=0.
  • λ ≥ 0 \lambda \geq 0 λ0.

if strong duality holds, and x , λ , ν x, \lambda, \nu x,λ,ν are optimal. they must satisfy KKT condition.

KKT for convex problem

If the primal problem is convex, then KKT is the condition for x ~ , λ ~ , ν ~ \tilde{x}, \tilde{\lambda}, \tilde{\nu} x~,λ~,ν~ is optimal and strong duality sufficient and necessary condition.

Proof for sufficient condition: From the first two conditions in KKT, x ~ \tilde{x} x~ is primal feasible point. L ( x , λ ~ , ν ~ ) L(x, \tilde{\lambda}, \tilde{\nu}) L(x,λ~,ν~) is a convex problem, due to λ > 0 \lambda > 0 λ>0.
L = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) g ( λ ~ , ν ~ ) = f 0 ( x ~ ) + ∑ λ ~ i f i ( x ) + ∑ ν ~ i h i ( x ) = f 0 ( x ~ ) \begin{aligned} &L = f_0(x)+\sum_{i=1}^m \lambda_i f_i(x)+\sum_{i=1}^p \nu_i h_i(x)\\ g(\tilde{\lambda}, \tilde{\nu})&=f_0(\tilde{x})+\sum \tilde{\lambda}_i f_i(x)+\sum \tilde{\nu}_ih_i(x)\\ &=f_0(\tilde{x}) \end{aligned} g(λ~,ν~)L=f0(x)+i=1mλifi(x)+i=1pνihi(x)=f0(x~)+λ~ifi(x)+ν~ihi(x)=f0(x~)
Due to f 0 ( x ) ≥ p ∗ ≥ g ( λ ~ , ν ~ ) f_0(x)\geq p^*\geq g(\tilde{\lambda}, \tilde{\nu}) f0(x)pg(λ~,ν~), then x ~ \tilde{x} x~ is primal optimal, λ ~ , ν ~ \tilde{\lambda}, \tilde{\nu} λ~,ν~ is dual optimal, and d ∗ = p ∗ d^*=p^* d=p strong duality.

Demo

min ⁡ 1 2 x ′ P x + q ′ x + t s . t . A x = b \begin{aligned} \min & \frac{1}{2}x'Px+q'x+t\\ s.t. & Ax=b \end{aligned} mins.t.21xPx+qx+tAx=b
where P ∈ S + n P\in \mathbb{S}_+^n PS+n.
The KKT condition is as follows:
A x ∗ = b P x ∗ + q + A ′ ν ∗ = 0 \begin{aligned} &Ax^*=b\\ &Px^*+q+A'\nu^*=0\\ \end{aligned} Ax=bPx+q+Aν=0
that is
[ P A ′ A 0 ] [ x ∗ ν ∗ ] = [ − q b ] \left[ \begin{matrix} P & A'\\ A & 0 \end{matrix} \right]\left[ \begin{matrix} x^*\\ \nu^* \end{matrix} \right]= \left[ \begin{matrix} -q\\ b \end{matrix} \right] [PAA0][xν]=[qb]

Demo2: Water-filling

min ⁡ − ∑ i = 1 n log ⁡ ( x i + α i ) s . t . x ≥ 0 , 1 ′ x = 1 \begin{aligned} \min & -\sum_{i=1}^n \log(x_i+\alpha_i)\\ s.t. & x\geq 0, \mathbf{1}'x=1 \end{aligned} mins.t.i=1nlog(xi+αi)x0,1x=1
KKT condition is as follows:
x ≥ 0 , 1 ′ x = 1 , λ i ≥ 0 , λ i x i = 0 , i = 1 , 2 , … , m − 1 x i + α i − λ i + ν = 0 \begin{aligned} &x\geq 0, \mathbf{1}'x=1, \lambda_i\geq 0, \lambda_ix_i=0, i=1, 2,\dots, m\\ &-\frac{1}{x_i+\alpha_i}-\lambda_i+\nu=0 \end{aligned} x0,1x=1,λi0,λixi=0,i=1,2,,mxi+αi1λi+ν=0
we have
λ i = − 1 x i + α i + ν ≥ 0 ν ≥ 1 α i + x i x i ( ν − 1 α i + x i ) = 0 \begin{aligned} &\lambda_i=-\frac{1}{x_i+\alpha_i}+\nu\geq 0\\ &\nu \geq \frac{1}{\alpha_i+x_i}\\ &x_i(\nu-\frac{1}{\alpha_i+x_i})=0 \end{aligned} λi=xi+αi1+ν0ναi+xi1xi(ναi+xi1)=0
The solution can be obtained by analyzing the following cases:
case 1:
ν < 1 α i \nu < \frac{1}{\alpha_i} ν<αi1
if x i = 0 x_i=0 xi=0, then ν ≥ 1 α i \nu\geq \frac{1}{\alpha_i} ναi1 is contradicted to ν < 1 α i \nu<\frac{1}{\alpha_i} ν<αi1. x i > 0 , x i = 1 ν − α i x_i>0, x_i=\frac{1}{\nu}-\alpha_i xi>0,xi=ν1αi.
case 2:
ν ≥ 1 α i → \nu\geq \frac{1}{\alpha_i}\to ναi1 contradiction.

As a result,
x i = { 1 ν − α i α i ≤ 1 ν 0 α i > 1 ν x_i= \left\{ \begin{aligned} &\frac{1}{\nu}-\alpha_i & \alpha_i\leq \frac{1}{\nu}\\ &0 & \alpha_i>\frac{1}{\nu} \end{aligned} \right. xi=ν1αi0αiν1αi>ν1
that is, x i = max ⁡ { 0 , 1 ν − α i } x_i=\max\{0, \frac{1}{\nu}-\alpha_i\} xi=max{0,ν1αi} and ∑ x i = 1 \sum x_i=1 xi=1.

Reference

B站 许志钦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值