Siamese Network & Triplet NetWork

孪生网络是一种用于衡量输入差异的深度学习模型,通过对比损失函数计算输入的相似度。其在图像识别、语义分析等领域有应用。伪孪生网络则适用于处理不同类型输入,如文本与图像的比较。三胞胎网络进一步扩展了这一概念,通过同时考虑正例和负例来优化模型,提升不同类别间的区分能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Siamese Network(孪生网络)

简单来说,孪生网络就是共享参数的两个神经网络

在孪生网络中,我们把一张图片 X 1 X_1 X1作为输入,得到该图片的编码 G W ( X 1 ) G_W(X_1) GW(X1)。然后,我们在不对网络参数进行任何更新的情况下,输入另一张图片 X 2 X_2 X2,并得到改图片的编码 G W ( X 2 ) G_W(X_2) GW(X2)。由于相似的图片应该具有相似的特征(编码),利用这一点,我们就可以比较并判断两张图片的相似性

孪生网络的损失函数

传统的Siamese Network使用Contrastive Loss(对比损失函数)
L = ( 1 − Y ) 1 2 ( D W ) 2 + ( Y ) 1 2 { m a x ( 0 , m − D W ) } 2 \mathcal{L} = (1-Y)\frac{1}{2}(D_W)^2+(Y)\frac{1}{2}\{max(0, m-D_W)\}^2 L=(1Y)21(DW)2+(Y)21{max(0,mDW)}2
其中 D W D_W DW被定义为孪生网络两个输入之间的欧氏距离,即
D W = { G W ( X 1 ) − G W ( X 2 ) } 2 D_W = \sqrt{\{G_W(X_1)-G_W(X_2)\}^2} DW={GW(X1)GW(X2)}2

  • Y Y Y值为0或1,如果 X 1 , X 2 X_1,X_2 X1,X2这对样本属于同一类,则 Y = 0 Y=0 Y=0,反之 Y = 1 Y=1 Y=1
  • m m m是边际价值(margin value),即当 Y = 1 Y=1 Y=1,如果 X 1 X_1 X1 X 2 X_2 X2之间距离大于 m m m,则不做优化(省时省力);如果 X 1 X_1 X1 X 2 X_2 X2之间的距离小于 m m m,则调整参数使其距离增大到 m m m
Contrastive Loss代码
import torch
import numpy as np
import torch.nn.functional as F

class ContrastiveLoss(torch.nn.Module):
    "Contrastive loss function"
    def __init__(self, m=2.0):
        super(ContrastiveLoss, self).__init__()
        self.m = m
            
    def forward(self, output1, output2, label):
        d_w = F.pairwise_distance(output1, output2)
        contrastive_loss = torch.mean((1-label) * 0.5 * torch.pow(d_w, 2) +
                                      (label) * 0.5 * torch.pow(torch.clamp(self.m - d_w, min=0.0), 2))

        return contrastive_loss

其中,F.pairwise_distance(x1, x2, p=2)函数公式如下
( ∑ i = 1 n ( ∣ x 1 − x 2 ∣ p ) ) 1 p x 1 , x 2 ∈ R b × n (\sum_{i=1}^n(|x_1-x_2|^p))^{\frac{1}{p}}\\ x_1,x_2 \in \mathbb{R}^{b\times n} (i=1n(x1x2p))p1x1,x2Rb×n

pairwise_distance(x1, x2, p) Computes the batchwise pairwise distance between vectors x 1 x_1 x1, x 2 x_2 x2 using the p-norm

孪生网络的用途

简单来说,孪生网络的直接用途就是衡量两个输入的差异程度(或者说相似程度)。将两个输入分别送入两个神经网络,得到其在新空间的representation,然后通过Loss Function来计算它们的差异程度(或相似程度)

  • 词汇语义相似度分析,QA中question和answer的匹配
  • 手写体识别也可以用Siamese Network
  • Kaggle上Quora的Question Pair比赛,即判断两个提问是否为同一个问题
Pseudo-Siamese Network(伪孪生网络)

对于伪孪生网络来说,两边可以是不同的神经网络(如一个是lstm,一个是cnn),并且如果是相同的神经网络,是不共享参数

孪生网络和伪孪生网络分别适用的场景
  • 孪生网络适用于处理两个输入比较类似的情况
  • 伪孪生网络适用于处理两个输入有一定差别的情况

例如,计算两个句子或者词汇的语义相似度,使用Siamese Network比较合适;验证标题与正文的描述是否一致(标题和正文长度差别很大),或者文字是否描述了一幅图片(一个是图片,一个是文字)就应该使用Pseudo-Siamese Network

Triplet Network(三胞胎网络)

如果说Siamese Network是双胞胎,那Triplet Network就是三胞胎。它的输入是三个:一个正例+两个负例,或一个负例+两个正例。训练的目标仍然是让相同类别间的距离尽可能小,不同类别间的距离尽可能大。Triplet Network在CIFAR,MNIST数据集上效果均超过了Siamese Network

损失函数定义如下:
L = m a x ( d ( a , p ) − d ( a , n ) + m a r g i n , 0 ) \mathcal{L}=max(d(a,p)-d(a,n)+margin, 0) L=max(d(a,p)d(a,n)+margin,0)

  • a a a表示anchor图像
  • p p p表示positive图像
  • n n n表示negative图像

我们希望 a a a p p p的距离应该小于 a a a n n n的距离。 m a r g i n margin margin是个超参数,它表示 d ( a , p ) d(a,p) d(a,p) d ( a , n ) d(a,n) d(a,n)之间应该相差多少,例如,假设 m a r g i n = 0.2 margin=0.2 margin=0.2,并且 d ( a , p ) = 0.5 d(a,p)=0.5 d(a,p)=0.5,那么 d ( a , n ) d(a,n) d(a,n)应该大于等于 0.7 0.7 0.7

Reference
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学家是我理想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值