机器学习中的数学——距离定义(二十九):点间互信息(Pointwise Mutual Information, PMI)

分类目录:《机器学习中的数学》总目录
相关文章:
· 距离定义:基础知识
· 距离定义(一):欧几里得距离(Euclidean Distance)
· 距离定义(二):曼哈顿距离(Manhattan Distance)
· 距离定义(三):闵可夫斯基距离(Minkowski Distance)
· 距离定义(四):切比雪夫距离(Chebyshev Distance)
· 距离定义(五):标准化的欧几里得距离(Standardized Euclidean Distance)
· 距离定义(六):马氏距离(Mahalanobis Distance)
· 距离定义(七):兰氏距离(Lance and Williams Distance)/堪培拉距离(Canberra Distance)
· 距离定义(八):余弦距离(Cosine Distance)
· 距离定义(九):测地距离(Geodesic Distance)
· 距离定义(十): 布雷柯蒂斯距离(Bray Curtis Distance)
· 距离定义(十一):汉明距离(Hamming Distance)
· 距离定义(十二):编辑距离(Edit Distance,Levenshtein Distance)
· 距离定义(十三):杰卡德距离(Jaccard Distance)和杰卡德相似系数(Jaccard Similarity Coefficient)
· 距离定义(十四):Ochiia系数(Ochiia Coefficient)
· 距离定义(十五):Dice系数(Dice Coefficient)
· 距离定义(十六):豪斯多夫距离(Hausdorff Distance)
· 距离定义(十七):皮尔逊相关系数(Pearson Correlation)
· 距离定义(十八):卡方距离(Chi-square Measure)
· 距离定义(十九):交叉熵(Cross Entropy)
· 距离定义(二十):相对熵(Relative Entropy)/KL散度(Kullback-Leibler Divergence)
· 距离定义(二十一):JS散度(Jensen–Shannon Divergence)
· 距离定义(二十二):海林格距离(Hellinger Distance)
· 距离定义(二十三):α-散度(α-Divergence)
· 距离定义(二十四):F-散度(F-Divergence)
· 距离定义(二十五):布雷格曼散度(Bregman Divergence)
· 距离定义(二十六):Wasserstein距离(Wasserstei Distance)/EM距离(Earth-Mover Distance)
· 距离定义(二十七):巴氏距离(Bhattacharyya Distance)
· 距离定义(二十八):最大均值差异(Maximum Mean Discrepancy, MMD)
· 距离定义(二十九):点间互信息(Pointwise Mutual Information, PMI)


在机器学习实践中,经常会用到点间互信息(Pointwise Mutual Information, PMI)来衡量两个变量的相关性:
PMI ( x , y ) = log ⁡ p ( x , y ) p ( x ) p ( y ) = log ⁡ p ( x ∣ y ) p ( x ) = log ⁡ p ( y ∣ x ) p ( y ) \text{PMI}(x, y)=\log{\frac{p(x, y)}{p(x)p(y)}=\log{\frac{p(x|y)}{p(x)}}}=\log{\frac{p(y|x)}{p(y)}} PMI(x,y)=logp(x)p(y)p(x,y)=logp(x)p(xy)=logp(y)p(yx)

x x x y y y不相关,则 p ( x , y ) = p ( x ) p ( y ) p(x,y)=p(x)p(y) p(x,y)=p(x)p(y)。二者相关性越大,则 p ( x , y ) p(x,y) p(x,y)就相比于 p ( x ) p ( y ) p(x)p(y) p(x)p(y)越大。同理,在 y y y出现的情况下 x x x出现的条件概率 p ( x ∣ y ) p(x|y) p(xy)除以 x x x本身出现的概率 p ( x ) p(x) p(x),自然就表示 x x x y y y的相关程度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值