分布式搜索引擎01:Elasticsearch入门教程

1. Elasticsearch

1.1 es介绍

1.2 倒排索引

正向索引

例如给下表(tb_goods)中的id创建索引:

在这里插入图片描述

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:
在这里插入图片描述

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

在这里插入图片描述

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.3 es的一些概念

文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息(最简单的理解就是数据库表中的每一条数据就是一个文档,只不过es存储的是json格式类型数据)。文档数据会被序列化为json格式后存储在elasticsearch中:

在这里插入图片描述

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

在这里插入图片描述

mysql 与 elasticsearch

概念对比:

在这里插入图片描述

mysql 与 elasticsearch各自有自己的擅长之处:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

在这里插入图片描述

2. 操作索引库(相当于mysql中的表)

2.1 mapping属性(相当于mysql表中字段的约束)

mapping是对索引库中文档的约束,常见的mapping属性包括

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

例如下面的json文档:

{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2 创建索引库 PUT /索引库名

PUT /索引库名

基本语法

  • 请求方式:PUT
  • 请求路径:/索引库名,库名可以自定义
  • 请求参数:mapping映射

格式

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

在kibana中测试

在这里插入图片描述

2.3 查询索引库 GET /索引库名

GET /索引库名

基本语法

  • 请求方式:GET

  • 请求路径:/索引库名

  • 请求参数:无

格式

GET /索引库名

在kibana中测试

在这里插入图片描述

2.4 删除索引库 DELETE /索引库名

DELETE /索引库名

基本语法

  • 请求方式:DELETE

  • 请求路径:/索引库名

  • 请求参数:无

格式:

DELETE /索引库名

在kibana中测试

在这里插入图片描述

2.5 修改索引库 PUT /索引库名/_mapping

PUT /索引库名/_mapping

注意:索引库只能添加字段,不能修改字段信息

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

基本语法

  • 请求方式:PUT
  • 请求路径:/索引库名/_mapping
  • 请求参数:mapping映射

格式

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}

在kibana中测试

在这里插入图片描述

2.6 索引库操作总结

  • 创建索引库PUT /索引库名
  • 查询索引库GET /索引库名
  • 删除索引库DELETE /索引库名
  • 添加字段PUT /索引库名/_mapping

3. 文档操作(相当于mysql表中的一行数据)

3.1 新增文档 POST /索引库名/_doc/文档id

POST /索引库名/_doc/文档id

基本语法

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

在kibana中测试
在这里插入图片描述

3.2 查询文档 GET /索引库名称/_doc/文档id

GET /{索引库名称}/_doc/{id}

基本语法

GET /{索引库名称}/_doc/{id}

在kibana中测试

在这里插入图片描述

3.3 删除文档 DELETE /索引库名/_doc/文档id

DELETE /索引库名/_doc/id值

基本语法

DELETE /索引库名/_doc/id值

在kibana中测试
在这里插入图片描述

3.4 修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段

3.4.1.全量修改 PUT或者POST /索引库名/_doc/文档id

PUT /索引库名/_doc/文档id

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

基本语法

PUT或者POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

在kibana中测试

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3.4.2.增量修改 POST /{索引库名}/_update/文档id {json字段}

POST /{索引库名}/_update/文档id {json字段}

增量修改是只修改指定id匹配的文档中的部分字段。

基本语法

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

在kibana中测试

在这里插入图片描述

3.5 文档操作总结

  • 创建文档POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档GET /{索引库名}/_doc/文档id
  • 删除文档DELETE /{索引库名}/_doc/文档id
  • 修改文档
    • 全量修改PUT /{索引库名}/_doc/文档id { json文档 }
    • 增量修改POST /{索引库名}/_update/文档id { "doc": {字段}}

4. RestClient

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client(使用版本)

4.1 RestClient环境准备

4.1.1 tb_hotel表结构

tb_hotel表结构

CREATE TABLE `tb_hotel` (
  `id` bigint(20) NOT NULL COMMENT '酒店id',
  `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',
  `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',
  `price` int(10) NOT NULL COMMENT '酒店价格;例:329',
  `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',
  `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',
  `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',
  `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',
  `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',
  `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',
  `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',
  `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

4.1.2 mapping映射分析

酒店数据的索引库结构:

PUT /hotel
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword",
        "copy_to": "all"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "ik_max_word"
      }
    }
  }
}

几个特殊字段说明

  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

地理坐标说明

在这里插入图片描述

copy_to说明

在这里插入图片描述

4.1.3 初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。
步骤1:引入es的RestHighLevelClient依赖:

<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

步骤2:因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties>
    <java.version>1.8</java.version>
    <elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

步骤3:初始化RestHighLevelClient:

初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://your_ip:9200")
));

创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

package cn.itcast.hotel;

import org.apache.http.HttpHost;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import java.io.IOException;

public class HotelIndexTest {
    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://your_ip:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

4.2 RestClient操作索引库

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

package cn.itcast.hotel.constants;

public class HotelConstants {
    public static final String HOTEL_MAPPING_TEMPLATE= "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"address\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"city\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"starName\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"location\":{\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";
}

4.2.1 创建索引库

在这里插入图片描述

public class HotelIndexTest {
    private RestHighLevelClient client;

    // 创建索引库
    @Test
    void testCreateHotelIndex() throws IOException {
        // 1.创建Request对象
        CreateIndexRequest request = new CreateIndexRequest("hotel");
        // 2.准备请求的参数:DSL语句
        request.source(HOTEL_MAPPING_TEMPLATE, XContentType.JSON);
        // 3.发送请求
        client.indices().create(request, RequestOptions.DEFAULT);
    }

    @BeforeEach
    void setUp(){
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.241.130:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

4.2.2 查询索引库

public class HotelIndexTest {
    private RestHighLevelClient client;

    // 查询索引库
    @Test
    void testGetHotelIndex() throws IOException {
        // 1.创建Request对象
        GetIndexRequest request = new GetIndexRequest("hotel");
        // 2.发送请求
        GetIndexResponse response = client.indices().get(request, RequestOptions.DEFAULT);
        System.out.println(response);
    }

    @BeforeEach
    void setUp(){
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.241.130:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

4.2.3 删除索引库

public class HotelIndexTest {
    private RestHighLevelClient client;

    // 删除索引库
    @Test
    void testDeleteHotelIndex() throws IOException {
        // 1.创建Request对象
        DeleteIndexRequest request = new DeleteIndexRequest("hotel");
        // 2.发送请求
        client.indices().delete(request, RequestOptions.DEFAULT);
    }


    @BeforeEach
    void setUp(){
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.241.130:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

4.2.4 判断索引库是否存在

public class HotelIndexTest {
    private RestHighLevelClient client;

    // 判断索引库是否存在
    @Test
    void testIsExistsHotelIndex() throws IOException {        // 1.创建Request对象
        GetIndexRequest request = new GetIndexRequest("hotel");
        // 2.发送请求
        boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
        System.err.println(exists ? "存在" : "不存在");
    }

    @BeforeEach
    void setUp(){
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("your_ip:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

4.3 RestClient操作文档

4.3.1 新增文档

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1
{
    "name": "Jack",
    "age": 21
}

对应的java代码如图:

@Test
void testAddDocument() throws IOException {
    // 1.根据id查询酒店数据
    Hotel hotel = hotelService.getById(61083L);
    // 2.转换为文档类型
    HotelDoc hotelDoc = new HotelDoc(hotel);
    // 3.将HotelDoc转json
    String json = JSON.toJSONString(hotelDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
    // 2.准备Json文档
    request.source(json, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

创建索引库类似,同样是三步走:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

4.3.2 查询文档

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

在这里插入图片描述

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化
@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "61082");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();

    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}

4.3.3 删除文档

删除的DSL为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法
@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

4.3.4 修改文档

修改方式

  • 全量修改:本质是先根据id删除,再新增
  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

代码示例如图:

**加粗样式**

三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("hotel", "61083");
    // 2.准备请求参数
    request.doc(
        "price", "952",
        "starName", "四钻"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

5.5.批量导入文档

利用BulkRequest批量将数据库数据导入到索引库中。

步骤如下:

  • 利用mybatis-plus查询酒店数据

  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)

  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。其中提供了一个add方法,用来添加其他请求:

在这里插入图片描述

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

@Test
void testBulkRequest() throws IOException {
    // 批量查询酒店数据
    List<Hotel> hotels = hotelService.list();

    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备参数,添加多个新增的Request
    for (Hotel hotel : hotels) {
        // 2.1.转换为文档类型HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 2.2.创建新增文档的Request对象
        request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
    }
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);

其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

碳烤小肥羊。。。

你的鼓励是我创造最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值