<think>好的,我需要帮助用户获取基于Hadoop的新能源车销售数据分析平台的代码实现。用户之前已经提供了平台架构和一些技术实现的细节,还引用了几个相关的文献。现在用户直接询问代码实现,我需要根据之前的架构和引用内容来构建回答。
首先,我需要回顾之前的回答结构,确保符合用户的要求:使用$...$和$$...$$格式,分步骤说明,代码示例,相关问题等。同时,要参考用户提供的引用内容,特别是引用[1]、[2]、[3]、[4],这些可能涉及Python、Hive、Hadoop、Spark、数据预处理、可视化等技术。
用户的需求是获取代码实现,所以需要提供具体的代码示例,涵盖数据采集、存储、处理、分析和可视化各个模块。需要确保代码符合Hadoop生态系统中的常用工具,比如MapReduce、Hive、Spark、Flume、Kafka等,并且结合引用中的内容,比如使用Hive进行销售趋势分析,使用ECharts进行可视化。
我需要考虑代码的实用性和正确性,例如数据采集层使用Flume和Kafka,存储层使用HDFS和Hive,处理层用Spark和MapReduce,分析层用Hive SQL和MLlib,可视化层用Superset和ECharts。同时,每个部分需要给出关键代码片段,并解释其作用。
还需要注意用户提到的数据预处理、MapReduce、echarts、Flask等,这些在引用[2]和[4]中出现过,可能需要整合到代码示例中。例如,使用MapReduce进行数据清洗,使用Flask搭建Web展示层,用ECharts生成图表。
最后,生成的相关问题需要与代码实现相关,可能涉及性能优化、实时处理、数据隐私等,确保问题符合用户可能的后续需求。
总结步骤:
1. 数据采集层的代码示例:Flume配置、Kafka生产者、Scrapy爬虫。
2. 数据存储层的Hive表创建和HDFS命令。
3. 数据处理层的MapReduce和Spark代码。
4. 分析计算层的Hive SQL和MLlib模型训练。
5. 可视化层的Flask和ECharts集成。
6. 确保代码语法正确,符合Hadoop生态系统工具的使用方式。
7. 添加相关问题,如性能优化、实时处理、数据加密等。</think>### 基于Hadoop的新能源车销售数据分析平台代码实现
#### 一、数据采集层代码示例
1. **Flume实时日志采集配置**
```properties
# flume_agent.conf
agent.sources = log_source
agent.channels = mem_channel
agent.sinks = hdfs_sink
agent.sources.log_source.type = exec
agent.sources.log_source.command = tail -F /var/log/sales/sales.log
agent.sources.log_source.channels = mem_channel
agent.channels.mem_channel.type = memory
agent.channels.mem_channel.capacity = 10000
agent.sinks.hdfs_sink.type = hdfs
agent.sinks.hdfs_sink.hdfs.path = hdfs://namenode:9000/raw_logs/%Y%m%d
agent.sinks.hdfs_sink.hdfs.fileType = DataStream
agent.sinks.hdfs_sink.hdfs.writeFormat = Text
```
启动命令:`flume-ng agent -n agent -f flume_agent.conf`
2. **Kafka生产者(Python示例)**
```python
from kafka import KafkaProducer
import json
producer = KafkaProducer(
bootstrap_servers=['kafka01:9092'],
value_serializer=lambda v: json.dumps(v).encode('utf-8')
)
def send_sales_data(data):
producer.send('sales_topic', value=data)
producer.flush()
```
3. **分布式爬虫(Scrapy核心代码)**
```python
class EvSalesSpider(scrapy.Spider):
name = "ev_sales"
custom_settings = {
'ITEM_PIPELINES': {'scrapy_kafka.KafkaPipeline': 300},
'KAFKA_BOOTSTRAP_SERVERS': ['kafka01:9092'],
'KAFKA_TOPIC': 'web_data'
}
def parse(self, response):
item = {
'province': response.css('.region::text').get(),
'sales': response.css('.sales-num::text').get().replace(',',''),
'timestamp': datetime.now().isoformat()
}
yield item
```
#### 二、数据存储层实现
1. **Hive数仓建表语句**
```sql
CREATE EXTERNAL TABLE IF NOT EXISTS fact_sales (
vin STRING COMMENT '车辆识别码',
sale_date TIMESTAMP,
province STRING,
model STRING,
price DECIMAL(10,2),
battery_health DECIMAL(3,2)
) PARTITIONED BY (dt STRING)
STORED AS ORC
LOCATION 'hdfs:///data/warehouse/fact_sales';
ALTER TABLE fact_sales ADD PARTITION (dt='202310');
```
2. **HDFS数据加载命令**
```bash
hadoop fs -put local_sales.csv /raw_data/sales/202310/
hdfs dfs -chmod -R 755 /raw_data
```
#### 三、数据处理核心代码
1. **MapReduce数据清洗(Java)**
```java
public class SalesCleaner extends Mapper<LongWritable, Text, Text, NullWritable> {
private Text cleanedData = new Text();
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
if(fields.length == 6 && fields[5].matches("\\d+\\.\\d+")) { // 验证电池健康度
cleanedData.set(StringUtils.join(fields, "|"));
context.write(cleanedData, NullWritable.get());
}
}
}
```
2. **Spark结构化流处理(Python)**
```python
from pyspark.sql import SparkSession
from pyspark.sql.functions import from_json, col
from pyspark.sql.types import *
schema = StructType([
StructField("province", StringType()),
StructField("sales", IntegerType()),
StructField("timestamp", TimestampType())
])
spark = SparkSession.builder.appName("RealTimeSales").getOrCreate()
df = spark.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "kafka01:9092") \
.option("subscribe", "sales_topic") \
.load()
parsed_df = df.select(from_json(col("value").cast("string"), schema).alias("data")).select("data.*")
query = parsed_df.writeStream \
.outputMode("append") \
.format("parquet") \
.option("path", "hdfs:///processed/realtime_sales") \
.option("checkpointLocation", "/checkpoints") \
.start()
```
#### 四、分析计算代码
1. **Hive区域渗透率分析**
```sql
WITH total_sales AS (
SELECT province, SUM(sales) as total
FROM fact_sales
WHERE dt BETWEEN '202301' AND '202312'
GROUP BY province
),
ev_sales AS (
SELECT province, SUM(sales) as ev_total
FROM fact_sales
WHERE fuel_type = 'EV' AND dt BETWEEN '202301' AND '202312'
GROUP BY province
)
SELECT
t.province,
ROUND((e.ev_total / t.total) * 100, 2) AS penetration_rate
FROM total_sales t
JOIN ev_sales e ON t.province = e.province;
```
2. **Spark ML销量预测**
```python
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.feature import VectorAssembler
assembler = VectorAssembler(
inputCols=["month", "gdp_growth", "policy_index"],
outputCol="features"
)
rf = RandomForestRegressor(
featuresCol="features",
labelCol="sales",
numTrees=100
)
model = rf.fit(assembler.transform(training_data))
predictions = model.transform(test_data)
```
#### 五、可视化实现(Flask+ECharts)
```python
from flask import Flask, render_template
from pyhive import hive
import json
app = Flask(__name__)
@app.route('/sales_trend')
def sales_trend():
conn = hive.connect(host='hive-server')
cursor = conn.cursor()
cursor.execute("SELECT province, SUM(sales) FROM fact_sales GROUP BY province")
data = [{'name': row[0], 'value': row[1]} for row in cursor.fetchall()]
return render_template('trend.html', data=json.dumps(data))
# trend.html模板示例
"""
<div id="chart" style="width:600px;height:400px;"></div>
<script>
var chart = echarts.init(document.getElementById('chart'));
var option = {
tooltip: {},
series: [{
type: 'map',
map: 'china',
data: {{ data|safe }}
}]
};
chart.setOption(option);
</script>
"""
```
#### 六、关键技术配置
1. **YARN资源调度(capacity-scheduler.xml)**
```xml
<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>default,batch,realtime</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.realtime.capacity</name>
<value>40</value>
</property>
```
2. **Hudi数据湖配置**
```scala
val hudiOptions = Map[String,String](
"hoodie.table.name" -> "sales",
"hoodie.datasource.write.recordkey.field" -> "vin",
"hoodie.datasource.write.precombine.field" -> "timestamp"
)
df.write.format("hudi").options(hudiOptions).mode("append").save("/hudi/sales")
```