线性代数28——复矩阵和快速傅立叶变换

  原文 | https://mp.weixin.qq.com/s/YzPoPnRb-gEm_EiV9et0TA

 

  实矩阵也可能碰到复特征值,因此无可避免地在矩阵运算中碰到复数。

  矩阵当然也有可能包含复数,最重要的复矩阵是傅立叶矩阵,它用于傅立叶变换。一种特殊的傅立叶变换是快速傅立叶变换(fast Fourier transform),简称FFT,在计算机中很常用,特别是涉及到大数据时,FFT将把傅立叶变换中的n阶方正阵乘法的运算次数从n2降低到nlog2n,这是一个巨大的进步。

 

本文相关前置知识

复数和复平面、复平面上的旋转

傅立叶矩阵中w的由来

标准正交矩阵及其性质

复矩阵的特征值

 

复向量

  先给出一个复向量,即向量的分量中至少有一个是复数:

  虽然这个向量在表达上和普通的实向量没什么区别,但这个向量不再属于实空间Rn,而是属于复空间Cn,即n维复空间。

模长

  关于复向量的第一个问题是模长怎么计算?

  由于向量中有复数分量,再用过zTz的方式是无法计算出模长的ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是8位的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值