文章目录
前言
顾名思义,“分区”(partitioning)操作就是要将数据进行重新分布,传递到不同的流分区去进行下一步处理。其实我们对分区操作并不陌生,前面介绍聚合算子时,已经提到了 keyBy,它就是一种按照键的哈希值来进行重新分区的操作。只不过这种分区操作只能保证把数据按key“分开”,至于分得均不均匀、每个 key 的数据具体会分到哪一区去,这些是完全无从控制的——所以我们有时也说,keyBy 是一种逻辑分区(logical partitioning)操作。
如果说 keyBy 这种逻辑分区是一种“软分区”,那真正硬核的分区就应该是所谓的“物理分区”(physical partitioning)。也就是我们要真正控制分区策略,精准地调配数据,告诉每个数据到底去哪里。其实这种分区方式在一些情况下已经在发生了:例如我们编写的程序可能对多个处理任务设置了不同的并行度,那么当数据执行的上下游任务并行度变化时,数据就不应该还在当前分区以直通(forward)方式传输了——因为如果并行度变小,当前分区可能没有下游任务了;而如果并行度变大,所有数据还在原先的分区处理就会导致资源的浪费。所以这种情况下,系统会自动地将数据均匀地发往下游所有的并行任务,保证各个分区的负载均衡。
有些时候,我们还需要手动控制数据分区分配策略。比如当发生数据倾斜的时候,系统无法自动调整,这时就需要我们重新进行负载均衡,将数据流较为平均地发送到下游任务操作分区中去。Flink 对于经过转换操作之后的 DataStream,提供了一系列的底层操作接口,能够帮我们实现数据流的手动重分区。为了同 keyBy 相区别,我们把这些操作统称为“物理分区”操作。物理分区与 keyBy 另一大区别在于,keyBy 之后得到的是一个 KeyedStream,而物理分区之后结果仍是 DataStream,且流中元素数据类型保持不变。从这一点也可以看出,分区算子并不对数据进行转换处理,只是定义了数据的传输方式。
常见的物理分区策略有随机分配(Random)、轮询分配(Round-Robin)、重缩放(Rescale)和广播(Broadcast),下边我们分别来做了解。
1. 随机分区(shuffle)
最简单的重分区方式就是直接“洗牌”。通过调用 DataStream 的.shuffle()方法,将数据随机地分配到下游算子的并行任务中去。
随机分区服从均匀分布(uniform distribution),所以可以把流中的数据随机打乱,均匀地传递到下游任务分区,如图 5-9 所示。因为是完全随机的,所以对于同样的输入数据, 每次执行得到的结果也不会相同。
经过随机分区之后,得到的依然是一个 DataStream。
我们可以做个简单测试:将数据读入之后直接打印到控制台,将输出的并行度设置为 4,
中间经历一次 shuffle。执行多次,观察结果是否相同。
public class ShuffleTest {
public static void main(String[] args) throws Exception {
// 创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 读取数据源,并行度为 1
DataStreamSource<Event> stream = env.addSource(new ClickSource());
// 经洗牌后打印输出,并行度为 4
stream.shuffle().print("shuffle").setParallelism(4);
env.execute();
}
}
可以得到如下形式的输出结果:
shuffle:1> Event{
user='Bob', url='./cart', timestamp=...}
shuffle:4> Event{
user='Cary', url='./home', timestamp=...}
shuffle:3> Event{
user='Alice', url='./fav', timestamp=...}
shuffle:4> Event{
user='Cary', url='./cart', timestamp=...}
shuffle:3> Event{
user='Cary', url='./fav', timestamp=...}
shuffle:1> Event{
user='Cary', url='./home', timestamp=...}
shuffle:2