2020 年,从架构谈起,到 Mesh 结束

本文探讨了软件架构的重要性,强调了微服务架构的非功能性需求,如易开发、部署、运维和演进能力。文章指出微服务并非灵丹妙药,而是为了应对复杂性和提高扩展性。对于Spring Cloud的讨论,文章提到了其侵入性、语言绑定和云原生融合的问题。最后,文章介绍了Istio Service Mesh在解决微服务问题上的潜力,但还面临弹性、监控、限流等挑战。

如今,几乎所有的事情都离不开软件,当你开车时,脚踩上油门,实际上是车载计算机通过力度感应等计算输出功率,最终来控制油门,你从未想过这会是某个工程师的代码。


作者 | 张羽辰(同昭)阿里云交付专家

导读:如今,几乎所有的事情都离不开软件,当你开车时,脚踩上油门,实际上是车载计算机通过力度感应等计算输出功率,最终来控制油门,你从未想过这会是某个工程师的代码。

当我们谈论架构时,我们到底在谈论什么?

面向对象编程?函数式?模块化设计?微服务?这些词汇貌似都和架构这个 buzzword 有点关系,的确我们这个领域充满了很多难以理解的词汇,这些词汇从英语翻译到中文已经丧失了部分上下文,再随着上下文的改变使得意义彻底扭曲,比如:引擎、框架、架构、应用、系统……诚然大家都或多或少对这些词语达成共识,在工作中使用这些词汇进行沟通,某时就是指“我们都懂的那个东西”,但是在我深入的想聊聊架构或者说软件架构时,的确不得不问自己这个问题,我们到底是谈论什么?
事实上,架构这个词根据上下文所确定的范围较为固定,建筑学上的架构指代房屋结构、整体设计、组合构成等,而这些 high-level 设计往往并不需要全面了解底层,就像使用 RestTemplate 进行 WebService 调用时,我们也不关心 socket 是在四层连接的一样,因为细节被隐藏了
但是,建筑学上的架构与软件架构却又极大的不同之处,问题出现在“软件”这个词上,按照 software 的词解,ware 是指产品一样的东西,而 soft 则强调易变,这是与 hardware 所对应的。我们希望“软件”能够进行快速的修改,应该能够快速响应甲方或者客户的需求,所以软件架构必然不像建筑架构一样,建筑一经建成,修改的成本极高,而软件应该走对应的方向,发挥易于修改的特点。

“现在的大多数软件非常像埃及金字塔,在彼此之间堆建了成千上万的砖块,缺乏结构完整性,只是靠蛮力和成千上万的奴隶完成。” —— Alan Kay。

笔者认为,虽然这句话表达的意思我很赞同,但实际上,金字塔作为帝王的陵墓,是有着完整的设计逻辑,并且随着好几座金字塔的迭代的,以及逐渐完备的施工管理,后期金字塔是非常杰出的建筑代表,并作为地球上最高的人造建筑持续了好几千年。关于金字塔是否由奴隶建造还是存有争议。(图片来自 Isabella Jusková @ Unsplash)。


作为工程师,我们一方面关注软件产品的能力和行为,这往往是一个项目的起点,另一方面我们需要关注软件的架构设计,因为我们希望设计有着弹性、易于维护、高性能、高可用的系统,更希望系统能够不断演进,而不是在未来被推倒重做。所以,回正我们的视野,当我们决心要设计一个好的架构时,我们需要明确,架构往往决定的是软件的非功能性需求。这些非功能性需求有:

  1. 易于开发:我们希望工程师一进入团队就可以立刻开始进行研发工作,我们希望代码易于阅读与理解,同时开发环境足够简单统一,说到这里大家可以回想下当你进入项目时,学习上下文的痛苦。当我们开始采用 docker 辅助开发时,时任架构师提出了一个要求,只要一行命令就可以使用 docker 启动本地测试环境,而且必须所有的微服务都要做到这一点。痛苦的改造完成后,三年后进入项目的同学只需要安装好 docker,再在 ternimal 中运行一句 ./run-dev.sh 就能够获取一个具有完整依赖的本地环境,提效明显。
  2. 方便部署:如果系统的部署成本很高,那使用价值就不会很高了,我们很多企业都存在那种动也不敢动,改也不敢改,停也不敢停的系统,除了祈祷它别挂掉好像没有别的办法,或者很多企业都采用了 K8s 这种先进的编排系统,但是在应用部署和上线时,还是走的每周四变更的路子。现代的发布方式 AB、金丝雀、灰度无法采用是因为改造成本过高,或者没有足够的自动化测试来保证改动安全,更别提将发布做到 CI\CD 里面了。
  3. 易于运维:DevOps 的初衷是建立一种缩短运维与研发距离的文化,让出现问题后更容易处理,希望让大家将视野放在产品上而不是限定自己
基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于提升系统在存在不确定性与扰动情况下的控制性能与稳定性。该模型结合实时迭代优化机制,增强了传统NMPC的数值鲁棒性,并通过双模控制策略兼顾动态响应与稳态精度,适用于复杂非线性系统的预测控制问题。文中还列举了多个相关技术方向的应用案例,涵盖电力系统、路径规划、信号处理、机器学习等多个领域,展示了该方法的广泛适用性与工程价值。; 适合人群:具备定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造、机器人控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于非线性系统的高性能预测控制设计,如电力系统调度、无人机控制、机器人轨迹跟踪等;②解决存在模型不确定性、外部扰动下的系统稳定控制问题;③通过Matlab仿真验证控制算法的有效性与鲁棒性,支撑科研论文复现与工程原型开发。; 阅读建议:建议读者结合提供的Matlab代码进行实践,重点关注NMPC的实时迭代机制与双模切换逻辑的设计细节,同时参考文中列举的相关研究方向拓展应用场景,强化对数值鲁棒性与系统稳定性之间平衡的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值