决策树(Hunt、ID3、C4.5、CART)

本文深入探讨决策树算法,从Hunt算法出发,详细介绍了信息增益、C4.5和CART算法。通过对信用卡欺诈预测和Iris数据集的应用,阐述了决策树的构建过程、问题与解决方案,揭示了其在数据分类中的应用和优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、决策树

  决策树属于经典的十大数据挖掘算法之一,是一种类似于流程图的树型结构,其规则就是if…then…的思想,用于数值型因变量的预测离散型因变量的分类。决策树算法简单直观,容易解释,而且在实际应用中具有其他算法难以比肩的速度优势。

  决策树方法在分类、预测和规则提取等领域有广泛应用。在20世纪70年代后期和80年代初期,机器学习研究人员J.Ross Quinlan开发了决策树算法,称为迭代的二分器(Iterative Dichotomiser, ID3),使得决策树在机器学习领域得到极大发展。Quinlan后来又提出ID3的后继C4.5算法,成为新的监督学习算法的性能比较基准。1984年几位统计学家又提出了CART分类算法。

  分类决策树模型是一种描述对实例进行分类的树形结构。决策树由节点(node)和有向边(directed edge)组成。节点有两种类型:内部节点和叶节点。内部节点表示一个特征或者属性,叶节点表示一个类。

  决策树分类过程:**从根节点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到其子节点;这时,每一个子节点对应该特征的一个取值。如此递归地对实例进行测试和分配,直至达到叶节点。**最后将实例分到叶节点地类中。如下图所

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别团等shy哥发育

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值