【愚公系列】《Python网络爬虫从入门到精通》036-DataFrame日期数据处理

标题 详情
作者简介 愚公搬代码
头衔 华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,亚马逊技领云博主,51CTO博客专家等。
近期荣誉 2022年度博客之星TOP2,2023年度博客之星TOP2,2022年华为云十佳博主,2023年华为云十佳博主,2024年华为云十佳博主等。
博客内容 .NET、Java、Python、Go、Node、前端、IOS、Android、鸿蒙、Linux、物联网、网络安全、大数据、人工智能、U3D游戏、小程序等相关领域知识。
欢迎 👍点赞、✍评论、⭐收藏

文章目录


🚀前言

在数据分析和处理的过程中,日期数据往往扮演着至关重要的角色。无论是时间序列分析、数据可视化,还是机器学习模型的构建,正确处理日期数据都是确保分析结果准确性的基础。在Python的Pandas库中,DataFrame提供了强大的工具和方法,使得日期数据的处理变得高效而便捷。

本篇文章将深入探讨如何在DataFrame中处理日期数据,包括日期的解析、格式化、时间戳的转换、日期范围的生成以及缺失数据的处理等关键技巧。我们将通过实例演示每个操作的具体应用,帮助你深入理解如何利用Pandas轻松应对各种日期处理需求。

🚀一、DataFrame日期数据处理

🔎1.📅 Pandas日期数据处理:to_datetime方法详解

🦋1.1 日期格式统一的重要性

  • 常见问题:同一日期存在多种表达格式
  • 解决方案:pandas.to_datetime() 方法可实现批量日期格式转换

常见日期格式示例

在这里插入图片描述

🦋1.2 to_datetime核心功能

方法语法

pandas.to_datetime(
    arg,
    errors='ignore',
    dayfirst=False,
    yearfirst=False,
    utc=None,
    box=True,
    format=None,
    exact=True,
    unit=None,
    infer_datetime_format=False,
    origin='unix',
    cache=False
)

参数详解

参数 类型 默认值 说明
arg 多种 - 输入数据(字符串、数组、Series)
errors str ‘ignore’ 错误处理策略:
- ignore:保留原值
- raise:抛出异常
- coerce:转为NaT
dayfirst bool False 优先解析日为第一位(如20/01/2020→2020-01-20)
yearfirst bool False 优先解析年为第一位(如10/11/12→2010-11-12)
format str None 自定义格式字符串(如%Y-%m-%d
unit str None 时间单位(D/s/ms/us/ns),用于解析时间戳
infer_datetime_format bool False 自动推断日期格式

🦋1.3 典型应用场景

☀️1.3.1 场景1:单列格式转换
import pandas as pd
#解决数据输出时列名不对齐的问题
pd.set_option('display.unicode.east_asian_width', True)
df=pd.DataFrame({
   '原日期':['14-Feb-20', '02/14/2020', '2020.02.14', '2020/02/14','20200214']})
df['转换后的日期']=pd.to_datetime(df['原日期'])
print(df)

输出结果:
在这里插入图片描述

☀️1.3.2 多列组合日期
import pandas as pd
#解决数据输出时列名不对齐的问题
pd.set_option('display.unicode.east_asian_width', True)
df = pd.DataFrame({
   'year': [2018, 2019,2020],
                   'month': [1, 3,2],
                   'day': [4, 5,14],
                   'hour':[13,8,2],
                   'minute':[23,12,14],
                   'second':[2,4,0]})
df['组合后的日期']=pd.to_datetime(df)
print(df)

输出结果:
在这里插入图片描述

🦋1.4 高级使用技巧

☀️1.4.1 处理异常数据
# 包含非法日期的数据转换
mixed_dates = ['2023-02-30', 'invalid_date', '202
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愚公搬代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值