😀前言
在这道题目中,我们需要计算一个机器人在给定的网格范围内,能够到达的最大格子数。机器人每次只能在网格中上下左右移动一格,并且受到一个约束条件的限制:机器人只能进入数位之和小于等于给定阈值的格子。因此,问题的关键是如何在遍历所有可能的格子时,判断是否满足这一条件。使用深度优先搜索(DFS)来进行遍历是解决该问题的一种有效方法。
🏠个人主页:尘觉主页
❤️🔥机器人的运动范围
🥰题目描述
地上有一个 m 行和 n 列的方格。一个机器人从坐标 (0, 0) 的格子开始移动,每一次只能向左右上下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于 k 的格子。
例如,当 k 为 18 时,机器人能够进入方格 (35,37),因为 3+5+3+7=18。但是,它不能进入方格 (35,38),因为 3+5+3+8=19。请问该机器人能够达到多少个格子?
数据范围:
0≤threshold≤15 ,1≤rows,cols≤100
进阶:空间复杂度 O(nm) ,时间复杂度 O(nm)
示例1
输入:1,2,3
返回值:3
示例2
输入:0,1,3
返回值:1
示例3
输入:10,1,100
返回值:29
说明:[0,0],[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7],[0,8],[0,9],[0,10],[0,11],[0,12],[0,13],[0,14],[0,15],[0,16],[0,17],[0,18],[0,19],[0,20],[0,21],[0,22],[0,23],[0,24],[0,25],[0,26],[0,27],[0,28] 这29种,后面的[0,29],[0,30]以及[0,31]等等是无法到达的
示例4
输入:5,10,10
返回值:21
💯解题思路
使用深度优先搜索(Depth First Search,DFS)方法进行求解。回溯是深度优先搜索的一种特例,它在一次搜索过程中需要设置一些本次搜索过程的局部状态,并在本次搜索结束之后清除状态。而普通的深度优先搜索并不需要使用这些局部状态,虽然还是有可能设置一些全局状态。
private static final int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
private int cnt = 0;
private int rows;
private int cols;
private int threshold;
private int[][] digitSum;
public int movingCount(int threshold, int rows, int cols) {
this.rows = rows;
this.cols = cols;
this.threshold = threshold;
initDigitSum();
boolean[][] marked = new boolean[rows][cols];
dfs(marked, 0, 0);
return cnt;
}
private void dfs(boolean[][] marked, int r, int c) {
if (r < 0 || r >= rows || c < 0 || c >= cols || marked[r][c])
return;
marked[r][c] = true;
if (this.digitSum[r][c] > this.threshold)
return;
cnt++;
for (int[] n : next)
dfs(marked, r + n[0], c + n[1]);
}
private void initDigitSum() {
int[] digitSumOne = new int[Math.max(rows, cols)];
for (int i = 0; i < digitSumOne.length; i++) {
int n = i;
while (n > 0) {
digitSumOne[i] += n % 10;
n /= 10;
}
}
this.digitSum = new int[rows][cols];
for (int i = 0; i < this.rows; i++)
for (int j = 0; j < this.cols; j++)
this.digitSum[i][j] = digitSumOne[i] + digitSumOne[j];
}
😄总结
通过深度优先搜索算法,我们成功地解决了该问题。我们在搜索的过程中,使用标记数组来避免重复访问,并通过预先计算的数位之和数组来快速判断某个格子是否可达。最终,我们能够在给定的条件下,准确计算出机器人可以到达的格子数量。该算法不仅有效地处理了题目中的限制条件,还能够在合理的时间和空间复杂度内完成任务,是一种实用的解法。
😁热门专栏推荐
想学习vue的可以看看这个
等等等还有许多优秀的合集在主页等着大家的光顾感谢大家的支持
🤔欢迎大家加入我的社区 尘觉社区
文章到这里就结束了,如果有什么疑问的地方请指出,诸佬们一起来评论区一起讨论😁
希望能和诸佬们一起努力,今后我们一起观看感谢您的阅读🍻
如果帮助到您不妨3连支持一下,创造不易您们的支持是我的动力🤞