\quad
这个题是一道最短路题,跟PAT甲级1003 Emergency (25 分)题解很像,即在求最短路的前提下,若有多条最短路,输出花费最少的一条。PAT最爱考这种题,因为花费最少满足最优子结构,我们可以直接在Dijistra中进行更新。程序如下:
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <cstring>
using namespace std;
const int maxn = 501;
vector<pair<int, int> > E[maxn];
int vis[maxn], dis[maxn], path[maxn];
map<pair<int, int>, int> mp; // 存放边之间的权值
int c[maxn]; // 存放起点到终点的花费
void Dijistra(int s, int t)
{
fill(dis, dis+maxn, 0x3f3f3f3f);
dis[s] = 0;
priority_queue<pair<int, int> > q;
q.push({0, s});
c[s] = 0;
while(!q.empty())
{
int u = q.top().second;
q.pop();
if(vis[u]==1) continue;
vis[u] = 1;
for (int i = 0; i < E[u].size(); ++i)
{
int v = E[u][i].first, w = E[u][i].second;
if(dis[v]>dis[u]+w)
{
path[v] = u;
dis[v] = dis[u]+w;
c[v] = c[u]+mp[{u, v}];
if(vis[v]==0) q.push({-dis[v], v});
}
else if(dis[v]==dis[u]+w && c[v]>mp[{u, v}]+c[u])
{
path[v] = u;
c[v] = mp[{u, v}]+c[u];
if(vis[v]==0) q.push({-dis[v], v});
}
}
}
vector<int> res;
res.push_back(t);
int temp = path[t];
while(temp!=s)
{
res.push_back(temp);
temp = path[temp];
}
res.push_back(s);
for (int i = res.size()-1; i >= 0; --i)
{
cout << res[i] << " ";
}
cout << dis[t] << " " << c[t];
}
int main(int argc, char const *argv[])
{
int N, M, S, D;
cin >> N >> M >> S >> D;
while(M--)
{
int u, v, w, cost;
cin >> u >> v >> w >> cost;
E[u].push_back({v, w});
E[v].push_back({u, w});
mp[{u, v}] = mp[{v, u}] = cost;
}
Dijistra(S, D);
return 0;
}