【01】LLaMA-Factory微调大模型——基础环境配置

为了构建法律领域的垂直应用大模型,从本文起记录使用LLaMA-Factory微调大模型的过程,以期UU们可以复刻与应用。大语言模型统一高效微调框架(LLaMA-Factory)的详解介绍可见:LLaMA-Factory/README_zh.md at main · hiyouga/LLaMA-Factory · GitHub

LLaMA-Factory框架旨在简化大型语言模型的微调过程,提供了一套完整的工具和接口,使得用户能够轻松地对预训练的模型进行定制化的训练和调整,以适应特定的应用场景。

LLaMA-Factory的优点:

  • 多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
  • 集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
  • 多种精度:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
  • 先进算法:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
  • 实用技巧:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
  • 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。

一、Python环境搭建

本文及后续所使用的操作系统均为: Ubuntu 22.04.4 LTS;显卡为:NVIDIA A40-48GB GPU。

大模型的开发依赖于Python语言,为了实现有效的版本控制,避免环境错乱,需搭建conda环境。Anaconda是一个用于科学计算的Python发行版本。它包含了一系列常用的数据科学工具和库,自带Conda的包管理系统可以帮助用户快速安装和管理Python包和依赖项,而无需担心版本冲突和依赖关系。它还可以创建与不同项目相关的虚拟环境,使得不同项目之间的依赖项隔离开来。

Anaconda下载地址:【根据使用的操作系统选择】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

比伯476

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值