2D Array - DS
Context
Given a 2D Array, :
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
We define an hourglass in to be a subset of values with indices falling in this pattern in ‘s graphical representation:
a b c
d
e f g
There are hourglasses in , and an hourglass sum is the sum of an hourglass’ values.
Task
Calculate the hourglass sum for every hourglass in , then print the maximum hourglass sum.
Note: If you have already solved the Java domain’s Java 2D Array challenge, you may wish to skip this challenge.
Input Format
There are lines of input, where each line contains space-separated integers describing 2D Array ; every value in will be in the inclusive range of to .
Constraints
Output Format
Print the largest (maximum) hourglass sum found in .
Sample Input
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 2 4 4 0
0 0 0 2 0 0
0 0 1 2 4 0
Sample Output
19
Explanation
contains the following hourglasses:
1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 0
1 1 1 1 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0
0 0 2 0 2 4 2 4 4 4 4 0
1 1 1 1 1 0 1 0 0 0 0 0
0 2 4 4
0 0 0 0 0 2 0 2 0 2 0 0
0 0 2 0 2 4 2 4 4 4 4 0
0 0 2 0
0 0 1 0 1 2 1 2 4 2 4 0
The hourglass with the maximum sum () is:
2 4 4
2
1 2 4
题目大意: 在一个6*6的二维数组中,求出满足hourglass形状的数字之和的最大值。
解题思路:用两个二重循环
#!/bin/python3
import sys
arr = []
for arr_i in range(6):
arr_t = [int(arr_temp) for arr_temp in input().strip().split(' ')]
arr.append(arr_t)
m=-100;
for i in range(0,4):
for j in range(0,4):
sum=0
sum=arr[i][j]+arr[i][j+1]+arr[i][j+2]+arr[i+1][j+1]+arr[i+2][j]+arr[i+2][j+1]+arr[i+2][j+2]
m=max(sum,m)
print(m)