基本步骤
- 选择变换:根据被积函数或积分区间,选择适当的线性变换 t = a x + b t = a x + b t=ax+b
- 计算微分:求出 d x dx dx 与 d t dt dt 的关系
- 变换积分限:将原积分上下限代入变换式
- 代入积分:将原积分用新变量表示并计算
- 必要时逆变换:将结果用原变量表示
应用案例
案例1:简单线性函数
计算 ∫ 0 4 ( 2 x + 1 ) d x \int_{0}^{4} (2x + 1) dx ∫04(2x+1)dx
直接计算
∫ 0 4 ( 2 x + 1 ) d x = [ x 2 + x ] 0 4 = ( 16 + 4 ) − 0 = 20 \int_{0}^{4} (2x + 1) dx = \left[ x^2 + x \right]_{0}^{4} = (16 + 4) - 0 = 20 ∫04(2x+1)dx=[x2+x]04=(16+4)−0=20
线性变换法
- 令 t = 2 x + 1 t = 2x + 1 t=2x+1,则:
- d t = 2 d x ⇒ d x = 1 2 d t dt = 2 dx \Rightarrow dx = \frac{1}{2} dt dt=2dx⇒dx=21dt
- 当 x = 0 x = 0 x=0 时, t = 1 t = 1 t=1;当 x = 4 x = 4 x=4 时, t = 9 t = 9 t=9
- ∫ 0 4 ( 2 x + 1 ) d x = ∫ 1 9 t ⋅ 1 2 d t = 1 2 ∫ 1 9 t d t = 1 2 [ t 2 2 ] 1 9 = 1 4 ( 81 − 1 ) = 20 \int_{0}^{4} (2x + 1) dx = \int_{1}^{9} t \cdot \frac{1}{2} dt = \frac{1}{2} \int_{1}^{9} t dt = \frac{1}{2} \left[ \frac{t^2}{2} \right]_{1}^{9} = \frac{1}{4} (81 - 1) = 20 ∫04(2x+1)dx=∫19t⋅21dt=21∫19tdt=21[2t2]19=41(81−1)=20
案例2:一般线性函数
计算 ∫ 0 2 ( 3 x − 1 ) d x \int_{0}^{2} (3x - 1) dx ∫02(3x−1)dx
直接计算
∫ 0 2 ( 3 x − 1 ) d x = [ 3 x 2 2 − x ] 0 2 = ( 12 2 − 2 ) − 0 = 4 \int_{0}^{2} (3x - 1) dx = \left[ \frac{3x^2}{2} - x \right]_{0}^{2} = \left( \frac{12}{2} - 2 \right) - 0 = 4 ∫02(3x−1)dx=[23x2−x]02=(212−2)−0=4
线性变换法
- 令 t = 3 x − 1 t = 3x - 1 t=3x−1,则:
- d t = 3 d x ⇒ d x = 1 3 d t dt = 3 dx \Rightarrow dx = \frac{1}{3} dt dt=3dx⇒dx=31dt
- 当 x = 0 x = 0 x=0 时, t = − 1 t = -1 t=−1;当 x = 2 x = 2 x=2 时, t = 5 t = 5 t=5
- ∫ 0 2 ( 3 x − 1 ) d x = ∫ − 1 5 t ⋅ 1 3 d t = 1 3 ∫ − 1 5 t d t = 1 3 [ t 2 2 ] − 1 5 = 1 6 ( 25 − 1 ) = 4 \int_{0}^{2} (3x - 1) dx = \int_{-1}^{5} t \cdot \frac{1}{3} dt = \frac{1}{3} \int_{-1}^{5} t dt = \frac{1}{3} \left[ \frac{t^2}{2} \right]_{-1}^{5} = \frac{1}{6} (25 - 1) = 4 ∫02(3x−1)dx=∫−15t⋅31dt=31∫−15tdt=31[2t2]−15=61(25−1)=4
案例3:倒数函数
计算 ∫ 1 3 1 x d x \int_{1}^{3} \frac{1}{x} dx ∫13x1dx
直接计算
∫ 1 3 1 x d x = [ ln ∣ x ∣ ] 1 3 = ln 3 \int_{1}^{3} \frac{1}{x} dx = \left[ \ln|x| \right]_{1}^{3} = \ln 3 ∫13x1dx=[ln∣x∣]13=ln3
线性变换法
-
令 t = 2 x t = 2x t=2x,则:
-
d t = 2 d x ⇒ d x = 1 2 d t dt = 2 dx \Rightarrow dx = \frac{1}{2} dt dt=2dx⇒dx=21dt
-
当 x = 1 x = 1 x=1 时, t = 2 t = 2 t=2;当 x = 3 x = 3 x=3 时, t = 6 t = 6 t=6
-
∫ 1 3 1 x d x = ∫ 2 6 1 t / 2 ⋅ 1 2 d t = ∫ 2 6 1 t d t = [ ln ∣ t ∣ ] 2 6 = ln 6 − ln 2 = ln 3 \int_{1}^{3} \frac{1}{x} dx = \int_{2}^{6} \frac{1}{t/2} \cdot \frac{1}{2} dt = \int_{2}^{6} \frac{1}{t} dt = \left[ \ln|t| \right]_{2}^{6} = \ln 6 - \ln 2 = \ln 3 ∫13x1dx=∫26t/21⋅21dt=∫26t1dt=[ln∣t∣]26=ln6−ln2=ln3
案例4:三角函数
计算 ∫ 0 π / 2 sin ( 2 x ) d x \int_{0}^{\pi/2} \sin(2x) dx ∫0π/2sin(2x)dx
直接计算
∫ 0 π / 2 sin ( 2 x ) d x = [ − 1 2 cos ( 2 x ) ] 0 π / 2 = − 1 2 ( cos π − cos 0 ) = − 1 2 ( − 1 − 1 ) = 1 \int_{0}^{\pi/2} \sin(2x) dx = \left[ -\frac{1}{2} \cos(2x) \right]_{0}^{\pi/2} = -\frac{1}{2} (\cos \pi - \cos 0) = -\frac{1}{2} (-1 - 1) = 1 ∫0π/2sin(2x)dx=[−21cos(2x)]0π/2=−21(cosπ−cos0)=−21(−1−1)=1
线性变换法
- 令 t = 2 x t = 2x t=2x,则:
- d t = 2 d x ⇒ d x = 1 2 d t dt = 2 dx \Rightarrow dx = \frac{1}{2} dt dt=2dx⇒dx=21dt
- 当 x = 0 x = 0 x=0 时, t = 0 t = 0 t=0;当 x = π / 2 x = \pi/2 x=π/2 时, t = π t = \pi t=π
- ∫ 0 π / 2 sin ( 2 x ) d x = ∫ 0 π sin t ⋅ 1 2 d t = 1 2 [ − cos t ] 0 π = 1 2 ( 1 − ( − 1 ) ) = 1 \int_{0}^{\pi/2} \sin(2x) dx = \int_{0}^{\pi} \sin t \cdot \frac{1}{2} dt = \frac{1}{2} \left[ -\cos t \right]_{0}^{\pi} = \frac{1}{2} (1 - (-1)) = 1 ∫0π/2sin(2x)dx=∫0πsint⋅21dt=21[−cost]0π=21(1−(−1))=1
4689

被折叠的 条评论
为什么被折叠?



