【高等数学】定积分的线性变换

基本步骤

  • 选择变换:根据被积函数或积分区间,选择适当的线性变换 t = a x + b t = a x + b t=ax+b
  • 计算微分:求出 d x dx dx d t dt dt 的关系
  • 变换积分限:将原积分上下限代入变换式
  • 代入积分:将原积分用新变量表示并计算
  • 必要时逆变换:将结果用原变量表示

应用案例

案例1:简单线性函数

计算 ∫ 0 4 ( 2 x + 1 ) d x \int_{0}^{4} (2x + 1) dx 04(2x+1)dx

直接计算

∫ 0 4 ( 2 x + 1 ) d x = [ x 2 + x ] 0 4 = ( 16 + 4 ) − 0 = 20 \int_{0}^{4} (2x + 1) dx = \left[ x^2 + x \right]_{0}^{4} = (16 + 4) - 0 = 20 04(2x+1)dx=[x2+x]04=(16+4)0=20

线性变换法

  • t = 2 x + 1 t = 2x + 1 t=2x+1,则:
  • d t = 2 d x ⇒ d x = 1 2 d t dt = 2 dx \Rightarrow dx = \frac{1}{2} dt dt=2dxdx=21dt
  • x = 0 x = 0 x=0 时, t = 1 t = 1 t=1;当 x = 4 x = 4 x=4 时, t = 9 t = 9 t=9
  • ∫ 0 4 ( 2 x + 1 ) d x = ∫ 1 9 t ⋅ 1 2 d t = 1 2 ∫ 1 9 t d t = 1 2 [ t 2 2 ] 1 9 = 1 4 ( 81 − 1 ) = 20 \int_{0}^{4} (2x + 1) dx = \int_{1}^{9} t \cdot \frac{1}{2} dt = \frac{1}{2} \int_{1}^{9} t dt = \frac{1}{2} \left[ \frac{t^2}{2} \right]_{1}^{9} = \frac{1}{4} (81 - 1) = 20 04(2x+1)dx=19t21dt=2119tdt=21[2t2]19=41(811)=20

案例2:一般线性函数

计算 ∫ 0 2 ( 3 x − 1 ) d x \int_{0}^{2} (3x - 1) dx 02(3x1)dx

直接计算

∫ 0 2 ( 3 x − 1 ) d x = [ 3 x 2 2 − x ] 0 2 = ( 12 2 − 2 ) − 0 = 4 \int_{0}^{2} (3x - 1) dx = \left[ \frac{3x^2}{2} - x \right]_{0}^{2} = \left( \frac{12}{2} - 2 \right) - 0 = 4 02(3x1)dx=[23x2x]02=(2122)0=4

线性变换法

  • t = 3 x − 1 t = 3x - 1 t=3x1,则:
  • d t = 3 d x ⇒ d x = 1 3 d t dt = 3 dx \Rightarrow dx = \frac{1}{3} dt dt=3dxdx=31dt
  • x = 0 x = 0 x=0 时, t = − 1 t = -1 t=1;当 x = 2 x = 2 x=2 时, t = 5 t = 5 t=5
  • ∫ 0 2 ( 3 x − 1 ) d x = ∫ − 1 5 t ⋅ 1 3 d t = 1 3 ∫ − 1 5 t d t = 1 3 [ t 2 2 ] − 1 5 = 1 6 ( 25 − 1 ) = 4 \int_{0}^{2} (3x - 1) dx = \int_{-1}^{5} t \cdot \frac{1}{3} dt = \frac{1}{3} \int_{-1}^{5} t dt = \frac{1}{3} \left[ \frac{t^2}{2} \right]_{-1}^{5} = \frac{1}{6} (25 - 1) = 4 02(3x1)dx=15t31dt=3115tdt=31[2t2]15=61(251)=4

案例3:倒数函数

计算 ∫ 1 3 1 x d x \int_{1}^{3} \frac{1}{x} dx 13x1dx

直接计算

∫ 1 3 1 x d x = [ ln ⁡ ∣ x ∣ ] 1 3 = ln ⁡ 3 \int_{1}^{3} \frac{1}{x} dx = \left[ \ln|x| \right]_{1}^{3} = \ln 3 13x1dx=[lnx]13=ln3

线性变换法

  • t = 2 x t = 2x t=2x,则:

  • d t = 2 d x ⇒ d x = 1 2 d t dt = 2 dx \Rightarrow dx = \frac{1}{2} dt dt=2dxdx=21dt

  • x = 1 x = 1 x=1 时, t = 2 t = 2 t=2;当 x = 3 x = 3 x=3 时, t = 6 t = 6 t=6

  • ∫ 1 3 1 x d x = ∫ 2 6 1 t / 2 ⋅ 1 2 d t = ∫ 2 6 1 t d t = [ ln ⁡ ∣ t ∣ ] 2 6 = ln ⁡ 6 − ln ⁡ 2 = ln ⁡ 3 \int_{1}^{3} \frac{1}{x} dx = \int_{2}^{6} \frac{1}{t/2} \cdot \frac{1}{2} dt = \int_{2}^{6} \frac{1}{t} dt = \left[ \ln|t| \right]_{2}^{6} = \ln 6 - \ln 2 = \ln 3 13x1dx=26t/2121dt=26t1dt=[lnt]26=ln6ln2=ln3


案例4:三角函数

计算 ∫ 0 π / 2 sin ⁡ ( 2 x ) d x \int_{0}^{\pi/2} \sin(2x) dx 0π/2sin(2x)dx

直接计算

∫ 0 π / 2 sin ⁡ ( 2 x ) d x = [ − 1 2 cos ⁡ ( 2 x ) ] 0 π / 2 = − 1 2 ( cos ⁡ π − cos ⁡ 0 ) = − 1 2 ( − 1 − 1 ) = 1 \int_{0}^{\pi/2} \sin(2x) dx = \left[ -\frac{1}{2} \cos(2x) \right]_{0}^{\pi/2} = -\frac{1}{2} (\cos \pi - \cos 0) = -\frac{1}{2} (-1 - 1) = 1 0π/2sin(2x)dx=[21cos(2x)]0π/2=21(cosπcos0)=21(11)=1

线性变换法

  • t = 2 x t = 2x t=2x,则:
  • d t = 2 d x ⇒ d x = 1 2 d t dt = 2 dx \Rightarrow dx = \frac{1}{2} dt dt=2dxdx=21dt
  • x = 0 x = 0 x=0 时, t = 0 t = 0 t=0;当 x = π / 2 x = \pi/2 x=π/2 时, t = π t = \pi t=π
  • ∫ 0 π / 2 sin ⁡ ( 2 x ) d x = ∫ 0 π sin ⁡ t ⋅ 1 2 d t = 1 2 [ − cos ⁡ t ] 0 π = 1 2 ( 1 − ( − 1 ) ) = 1 \int_{0}^{\pi/2} \sin(2x) dx = \int_{0}^{\pi} \sin t \cdot \frac{1}{2} dt = \frac{1}{2} \left[ -\cos t \right]_{0}^{\pi} = \frac{1}{2} (1 - (-1)) = 1 0π/2sin(2x)dx=0πsint21dt=21[cost]0π=21(1(1))=1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值