生成tfrecord
import os
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import random,math,sys
from PIL import Image
import numpy as np
gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=0.333)
_NUM_TEST = 500
_RANDOM_SEED = 0
_NUM_SHARDS = 5
#dataset path
DATASET_DIR = r'captcha/images/'
#tfrecord where to save
TFRECORD_DIR = 'captcha/'
#判断 tfrecord is exists
def _dataset_exists(dataset_dir):
for split_name in ['train', 'test']:
output_filename = os.path.join(dataset_dir, split_name, '.tfrecords')
if not tf.gfile.Exists(output_filename):
return False
return True
#get all v_code's path
def _get_filename_and_classes(dataset_dir):
photo_filenames = []
for filename in os.listdir(dataset_dir):
path = os.path.join(dataset_dir,filename)
photo_filenames.append(path)
return photo_filenames
def int64_feature(values):
if not isinstance(values, (tuple,list)):
values = [values]
return tf.train.Feature(int64_list = tf.train.Int64List(value=values))
def bytes_feature(values):
return tf.train.Feature(bytes_list = tf.train.BytesList(value=[values]))
def image_to_tfexample(image_data, label0,label1,label2,label3,label4):
return tf.train.Example(features=tf.train.Features(feature={
'image':bytes_feature(image_data), #bytes类型 int bytes float 可以有三种类型
'label0':int64_feature(label0),
'label1': int64_feature(label1),
'label2': int64_feature(label2),
'label3': int64_feature(label3),
'label4': int64_feature(label4),
}))
#为什么要拆成5位呢? 而不是1位呢? 是为了多任务的方式。
#把数据转换为TFRecord格式
def _covert_dataset(split_name, filenames, dataset_dir):
assert split_name in ['train', 'test']
#计算每个数据块有多少数据(数据量比较大的时候才需要切分)
with tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options)) as sess:
output_filename = os.path.join(TFRECORD_DIR,split_name+'.tfrecords')
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
for i, filename in enumerate(filenames):
try:
sys.stdout.write('\r >> Converting image %d/%d %s' %(i+1, len(filenames), filename))
sys.stdout.flush()
#读取图片
image_data = Image.open(filename)
image_data = image_data.resize((224,224)) # 160*60
image_data = np.array(image_data.convert('L')) #灰度化
image_data = image_data.tobytes() #转化为bytes
#获取label
labels = filename.split('/')[-1][0:5]
num_labels = []
for j in range(5):
str = labels[j]
if str.isdigit():
num_labels.append(int(str))
elif str.isalpha():
num_labels.append(ord(str))
#生成protocol数据
example = image_to_tfexample(image_data, num_labels[0], num_labels[1], num_labels[2], num_labels[3],num_labels[4])
tfrecord_writer.write(example.SerializeToString())
except IOError as err:
print("Could not read:", filenames[i])
print("Erroe:", err)
print("skip it \n")
sys.stdout.write('\n')
sys.stdout.flush()
if __name__ == '__main__':
#判断tfrecord是否存在
if _dataset_exists(DATASET_DIR):
print('tfrecord is Exists')
else:
#获得所有图片以及分类
photo_filenames = _get_filename_and_classes(DATASET_DIR)
#把分类转换为字典格式,类似于{'house':3, 'flower':1, 'plane':4, 'guitar':2, 'animal':0}
class_name_to_ids = dict(zip(class_name, range(len(class_names))))
#把数据切分为训练集和测试集
random.seed(_RANDOM_SEED)
random.shuffle(photo_filenames)
training_filenames = photo_filenames[_NUM_TEST:]
testing_filenames = photo_filenames[:_NUM_TEST]
#数据转换
_covert_dataset('train', training_filenames, DATASET_DIR)
_covert_dataset('test', testing_filenames, DATASET_DIR)
#输出labels文件
labels_to_class_names = dict(zip(range(len(class_names)),class_names))
write_label_file(labels_to_class_names, DATASET_DIR)
print('produce tfrecord sucessful')
点赞,关注,收藏👍,➕,👀点赞,关注,收藏👍,➕,👀点赞,关注,收藏👍,➕,👀
😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘
💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪
欢迎大噶关注我的微信公众号