神经网络saver_save
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #手写数字相关的数据包
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #载入数据,{数据集包路径,把标签转化为只有0和1的形式}
#定义变量,即每个批次的大小
batch_size = 100 #一次放100章图片进去
n_batch = mnist.train.num_examples // batch_size #计算一共有多少个批次;训练集数量(整除)一个批次大小
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784]) #[行不确定,列为784]
y = tf.placeholder(tf.float32,[None,10]) #数字为0-9,则为10
#创建简单的神经网络
W = tf.Variable(tf.zeros([784,10])) #权重
b = tf.Variable(tf.zeros([10])) #偏置
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #预测
#定义二次代价函数
#loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#准确数,结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) #比较两个参数大小是否相同,同则返回为true,不同则返回为false;argmax():返回张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #cast():将布尔型转换为32位的浮点型;(比方说9个T和1个F,则为9个1,1个0,即准确率为90%)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
for epoch in range(11):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter" + str(epoch) + ",Testing Accuracy" + str(acc))
#保存模型
saver.save(sess,'net/my_net.ckpt')
Iter0,Testing Accuracy0.8256
Iter1,Testing Accuracy0.8897
Iter2,Testing Accuracy0.9001
Iter3,Testing Accuracy0.9056
Iter4,Testing Accuracy0.9084
Iter5,Testing Accuracy0.9095
Iter6,Testing Accuracy0.9119
Iter7,Testing Accuracy0.9141
Iter8,Testing Accuracy0.9154
Iter9,Testing Accuracy0.9158
Iter10,Testing Accuracy0.9173
点赞,关注,收藏👍,➕,👀点赞,关注,收藏👍,➕,👀点赞,关注,收藏👍,➕,👀
😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘
💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪
欢迎大噶关注我的微信公众号