卷积神经网络CNN的tensorboard实现
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #手写数字相关的数据包
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #载入数据,{数据集包路径,把标签转化为只有0和1的形式}
#定义变量,即每个批次的大小
batch_size = 100 #一次放100章图片进去
n_batch = mnist.train.num_examples // batch_size #计算一共有多少个批次;训练集数量(整除)一个批次大小
#参数概要
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean',mean) #平均值
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev',stddev) #标准差
tf.summary.scalar('max',tf.reduce_max(var)) #最大值
tf.summary.scalar('min',tf.reduce_min(var)) #最小值
tf.summary.scalar('histogram',var) #直方图
#初始化权值
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1) #生成一个截断的正态分布
return tf.Variable(initial)
#初始化偏置
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)
#卷积层
def conv2d(x,W):
#x input tensor of shape '[batch, in_height, in_width, in_channels]'
#W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
#'strides[0] = strides[3] = 1', strides[1]代表x方向的步长,strides[2]代表y方向的步长
#padding:A 'string' frome: '"SAME"(补0), "VALID"(不补0)'
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#池化层
def max_pool_2x2(x):
#ksize [1,x,y,1](窗口大小)
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
with tf.name_scope('input'):
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784]) #[行不确定,列为784]:28*28
y = tf.placeholder(tf.float32,[None,10]) #数字为0-9,则为10
with tf.name_scope('x_image'):
#改变x的格式转为4D的向量[batch, in_height, in_width, in_channels]
x_image = tf.reshape(x,[-1,28,28,1],name='x_image')
with tf.name_scope('Conv1'):
#初始化第一个卷积层的权值和偏置
with tf.name_scope('W_conv1'):
W_conv1 = weight_variable([5,5,1,32],name='W_conv1') #5*5的采样窗口,32个卷积核从1个平面抽取特征
with tf.name_scope('b_conv1'):
b_conv1 = bias_variable([32],name='b_conv1') #每个卷积核一个偏置
with tf.name_scope('conv2d_1'):
#把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
with tf.name_scope('relu'):
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)
with tf.name_scope('h_pool1')
h_pool1 = max_pool_2x2(h_conv1) #进行max-pooling
with tf.name_scope('conv2'):
#初始化第二个卷积层的权值和偏置
with tf.name_scope('W_conv2'):
W_conv2 = weight_variable([5,5,32,64],name='W_conv2') #5*5的采样窗口,32个卷积核从1个平面抽取特征
with tf.name_scope('b_conv2'):
b_conv2 = bias_variable([64],name='b_conv2') #每个卷积核一个偏置
with tf.name_scope('conv2d_2'):
#把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
with tf.name_scope('relu'):
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
with tf.name_scope('h_pool2'):
h_pool2 = max_pool_2x2(h_conv2,name='h_pool2') #进行max-pooling
#28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
#第二次卷积后为14*14,第二次池化后变为7*7
#经过上面的操作后得到64张7*7的平面
with tf.name_scope('fc1'):
#初始化第一个全连接层的权值
with tf.name_scope('W_fc1'):
W_fc1 = weight_variable([7*7*64,1024],name='W_fc1') #上一层有7*7*64个神经元,全连接层有1024个神经元
with tf.name_scope('b_fc1'):
b_fc1 = bias_variable([1024],name='b_fc1') #1024个节点
#把池化层2的输出扁平化为1维
with tf.name_scope('h_pool2_flat'):
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64],name='h_pool2_flat')
#求第一个全连接层的输出
with tf.name_scope('relu'):
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)
#keep_prob用来表示神经元的输出概率
with tf.name_scope('keep_prob'):
keep_prob = tf.placeholder(tf.float32,name='keep_prob')
with tf.name_scope('h_fc1_drop')
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob,name='h_fc1_drop')
with tf.name_scope('fc2'):
#初始化第二个全连接层
with tf.name_scope('W_fc2'):
W_fc2 = weight_variable([1024,10],name='W_fc2')
with tf.name_scope('b_fc2'):
b_fc2 = bias_variable([10],name='b_fc2')
with tf.name_scope('wx_plus_b2'):
wx_plus_b2 = tf.matmul(h_fc1_drop,Wfc2) + b_fc2
with tf.name_scope('softmax'):
#计算输出
prediction = tf.nn.softmax(wx_plus_b2)
with tf.name_scope('cross_entropy'):
#定义交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction),name='cross_entropy')
tf.summary.scalar('cross_entropy',cross_entropy)
#使用AdamOptimizer进行优化
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'):
#准确数,结果存放在一个布尔型列表中
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #比较两个参数大小是否相同,同则返回为true,不同则返回为false;argmax():返回张量中最大的值所在的位置
#求准确率
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #cast():将布尔型转换为32位的浮点型;(比方说9个T和1个F,则为9个1,1个0,即准确率为90%)
tf.summary.scalar('accuracy',accuracy)
#合并所有的summary
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
train_writer = tf.summary.FileWriter('logs/train',sess.graph)
teat_writer = tf.summary.FileWriter('logs/test',sess.graph)
for i in range(1001):
#训练模型
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.5})
#记录训练集计算的参数
summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
train_writer.add_summary(summary,i)
#记录测试集计算的参数
batch_xs,batch_ys = mnist.test.next_batch(batch_size)
summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
test_writer.add_summary(summary,i)
if i%100==0:
test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
train_acc = sess.run(accuracy,feed_dict={x:mnist.test.images[:10000],y:mnist.test.labels[:10000],keep_prob:1.0})
print("Iter" + str(i) + ",Testing Accuracy" + str(test_acc) + ",Training Accuracy" + str(train_acc))
点赞,关注,收藏👍,➕,👀点赞,关注,收藏👍,➕,👀点赞,关注,收藏👍,➕,👀
😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘
💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪
欢迎大噶关注我的微信公众号