Tensorflow代码学习-6-1CNN用于MNIST数据分类

卷积神经网络CNN用于MNIST数据分类

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data   #手写数字相关的数据包
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)    #载入数据,{数据集包路径,把标签转化为只有0和1的形式}

#定义变量,即每个批次的大小
batch_size = 100    #一次放100章图片进去
n_batch = mnist.train.num_examples // batch_size   #计算一共有多少个批次;训练集数量(整除)一个批次大小


#初始化权值
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1)   #生成一个截断的正态分布
    return tf.Variable(initial)

#初始化偏置
def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)

#卷积层
def conv2d(x,W):
    #x input tensor of shape '[batch, in_height, in_width, in_channels]'
    #W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
    #'strides[0] = strides[3] = 1', strides[1]代表x方向的步长,strides[2]代表y方向的步长
    #padding:A 'string' frome: '"SAME"(补0), "VALID"(不补0)'
    return tf.nn.conv2d(x,W,strides=[1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值