tensorboad网络结构
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #手写数字相关的数据包
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #载入数据,{数据集包路径,把标签转化为只有0和1的形式}
#定义变量,即每个批次的大小
batch_size = 100 #一次放100章图片进去
n_batch = mnist.train.num_examples // batch_size #计算一共有多少个批次;训练集数量(整除)一个批次大小
#(在3-2基础上添加)命名空间
with tf.name_scope('input'):
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784],name='x-input') #[行不确定,列为784]
y = tf.placeholder(tf.float32,[None,10],name='y-input') #数字为0-9,则为10
with tf.name_scope('layer'):
#创建一个简单的神经网络
with tf.name_scope('wights'):
W = tf.Variable(tf.zeros([784,10]),name='W') #权重
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]),name='b') #偏置
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x,W) + b
with tf.name_scope('softmax'):
prediction = tf.nn.softmax(wx_plus_b) #预测
with tf.name_scope('loss'):
#定义二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
with tf.name_scope('train'):
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
#准确数,结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) #比较两个参数大小是否相同,同则返回为true,不同则返回为false;argmax():返回张量中最大的值所在的位置
with tf.name_scope('accuracy'):
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #cast():将布尔型转换为32位的浮点型;(比方说9个T和1个F,则为9个1,1个0,即准确率为90%)
#在3-2基础上更改
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/',sess.graph)
for epoch in range(1):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter" + str(epoch) + ",Testing Accuracy" + str(acc))
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
Iter0,Testing Accuracy0.8764
点赞,关注,收藏👍,➕微信公众号,点赞,关注,收藏👍,➕微信公众号
😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘😘
💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪💪