以下是图片中的文字内容:
复制
随着大模型技术的飞速发展,模型参数量急剧增长,模型能力持续增强,智能应用百花齐放。基础设施的可用性决定了大模型研发及服务的效率,大模型服务的可用性又决定了智能应用的服务质量。在此背景下,高质量大模型基础设施成为推动大模型应用落地的关键要素。为充分发挥大模型基础设施的赋能作用,更好支撑大模型发展,推动大模型应用落地,特编制此研究报告。
2025年1月8日,在大模型工程化成果发布会上,中国信息通信研究院(简称“中国信通院”)人工智能研究所发布《高质量大模型基础设施研究报告(2024年)》,由中国信通院人工智能研究所平台与工程化部主任曹峰解读。
报告聚焦大模型基础设施的五大核心能力领域:计算、存储、网络、开发工具链和运维管理,系统梳理了大模型发展对基础设施提出的新需求,剖析了基础设施发展的关键技术,并提出体系化评价指标。同时,报告通过分析业界典型实践案例,为企业建设高质量大模型基础设施提供了参考。
报告核心观点
-
计算资源分配粗放,高效异构算力融合调度成为新需求。一是异构资源统一纳管。算力资源利旧带来不同架构AI芯片纳管需求,大模型在科学、工业仿真等领域应用加深带来CPU和AI芯片纳管需求。华为、移动、电信等厂商积极推动异构智算管理平台研发,通过统一编程接口、智能调度等技术,实现对多