Neural Blind Deconvolution Using Deep Priors论文阅读


本文是2020年CVPR会议的开源论文《Neural Blind Deconvolution Using Deep Priors》,作者为Ren等人,提出了名为 SelfDeblur的神经盲解卷积方法,旨在解决图像去模糊( image deblurring)这一经典低层次视觉问题。


1. 研究目标与实际问题

1.1 研究目标

论文的目标是提出一种基于深度学习的盲解卷积(blind deconvolution)方法,用于从模糊图像中同时估计模糊核(blur kernel)和潜在清晰图像(latent clean image)。盲解卷积的数学模型为:

y = k ⊗ x + n \mathbf{y} = \mathbf{k} \otimes \mathbf{x} + \mathbf{n} y=kx+n

其中, y \mathbf{y} y 是模糊图像, k \mathbf{k} k 是模糊核, x \mathbf{x} x 是潜在清晰图像, n \mathbf{n} n加性白高斯噪声(additive white Gaussian noise, AWGN), ⊗ \otimes 表示二维卷积运算。目标是从单一模糊图像 y \mathbf{y} y 中恢复 k \mathbf{k} k x \mathbf{x} x

1.2 实际问题

盲解卷积是一个经典的病态问题(ill-posed problem),因为模糊核和清晰图像均未知,解空间具有高度不确定性。实际中,相机抖动(camera shake)或运动模糊会导致图像质量下降,影响摄影、监控、自动驾驶等领域的应用。传统方法依赖手工设计的先验(handcrafted priors),如总变差(total variation, TV)正则化,但这些先验不足以捕捉复杂图像和模糊核的特性,且容易陷入平凡解(trivial solution,如delta核)。

1.3 产业意义

盲解卷积在多个领域具有重要意义:

  • 摄影与消费电子:提升智能手机或相机在低光或运动场景下的成像质量。
  • 自动驾驶:处理因车辆运动或环境因素导致的模糊图像,提高感知系统可靠性。
  • 医学影像:改善CT或MRI图像的清晰度,辅助诊断。
  • 安防监控:增强模糊监控视频的细节,助力目标识别。

通过提出无需训练数据的“零样本”方法,SelfDeblur降低了对大规模标注数据集的依赖,为实时、轻量化的去模糊算法提供了可能性,具有显著的产业化潜力。


2. 新思路、方法与模型

2.1 核心创新:SelfDeblur方法

论文提出了SelfDeblur,一种基于深度图像先验(Deep Image Prior, DIP)和全衔接网络(Fully-Connected Network, FCN)的神经盲解卷积方法,旨在解决传统最大后验概率(Maximum a Posteriori, MAP)架和深度学习方法的局限性。其创新点包括:

  • 深度先验建模:使用生成网络 G x \mathcal{G}_x Gx(基于不对称自编码器,asymmetric Autoencoder)和 G k \mathcal{G}_k Gk(基于FCN)分别捕获清晰图像和模糊核的统计特性,取代传统手工先验。
  • “零样本”自监督学习:无需预训练,仅利用单幅模糊图像进行优化,称为零样本自监督学习(zero-shot self-supervised learning),降低数据依赖。
  • 无约束优化:通过网络设计(如SoftMax非线性Sigmoid非线性)自动满足模糊核的非负和归一化约束,以及图像像素范围约束,简化优化过程。
  • 联合优化:提出联合优化(joint optimization)策略,相较于传统交替优化(alternating optimization),更能避免陷入鞍点(saddle points)或平凡解。

2.2 数学公式与模型推导

2.2.1 传统MAP框架

传统盲解卷积基于MAP框架,优化目标为:

( k , x ) = arg ⁡ max ⁡ x , k Pr ⁡ ( k , x ∣ y ) = arg ⁡ max ⁡ x , k Pr ⁡ ( y ∣ k , x ) Pr ⁡ ( x ) Pr ⁡ ( k ) (2) (\mathbf{k}, \mathbf{x}) = \arg \max_{\mathbf{x}, \mathbf{k}} \operatorname{Pr}(\mathbf{k}, \mathbf{x} \mid \mathbf{y}) = \arg \max_{\mathbf{x}, \mathbf{k}} \operatorname{Pr}(\mathbf{y} \mid \mathbf{k}, \mathbf{x}) \operatorname{Pr}(\mathbf{x}) \operatorname{Pr}(\mathbf{k}) \tag{2} (k,x)=argx,kmaxPr(k,xy)=argx,kmaxPr(yk,x)Pr(x)Pr(k)(2)

其中, Pr ⁡ ( y ∣ k , x ) \operatorname{Pr}(\mathbf{y} \mid \mathbf{k}, \mathbf{x}) Pr(yk,x) 是似然项, Pr ⁡ ( x ) \operatorname{Pr}(\mathbf{x}) Pr(x) Pr ⁡ ( k ) \operatorname{Pr}(\mathbf{k}) Pr(k) 是清晰图像和模糊核的先验。等价的优化形式为:

( x , k ) = arg ⁡ min ⁡ ( x , k ) ∥ k ⊗ x − y ∥ 2 + λ ϕ ( x ) + τ φ ( k ) (\mathbf{x}, \mathbf{k}) = \arg \min_{(\mathbf{x}, \mathbf{k})} \|\mathbf{k} \otimes \mathbf{x} - \mathbf{y}\|^2 + \lambda \phi(\mathbf{x}) + \tau \varphi(\mathbf{k}) (x,k)=arg(x,k)minkxy2+λϕ(x)+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值