《动手学深度学习》学习笔记(四)

 第四章 深度学习计算

一、模型构造

1、继承Module类来构造模型

Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。

下面继承Module类构造本节开头提到的多层感知机。这里定义的MLP类重载了Module类的__init__函数和forward函数。它们分别用于创建模型参数和定义前向计算。前向计算也即正向传播。

import torch
from torch import nn

class MLP(nn.Module):
    # 声明带有模型参数的层,这里声明了两个全连接层
    def __init__(self, **kwargs):
        # 调用MLP父类Module的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数
        # 参数,如“模型参数的访问、初始化和共享”一节将介绍的模型参数params
        super(MLP, self).__init__(**kwargs)
        self.hidden = nn.Linear(784, 256) # 隐藏层
        self.act = nn.ReLU()
        self.output = nn.Linear(256, 10)  # 输出层
         

    # 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出
    def forward(self, x):
        a = self.act(self.hidden(x))
        return self.output(a)
# 我们可以实例化MLP类得到模型变量net。下面的代码初始化net并传入输入数据X做一次前向计算。其中, net(X)会调用MLP继承自Module类的__call__函数,这个函数将调用MLP类定义的forward函数来完成前向计#算。
X = torch.rand(2, 784)
net = MLP()
print(net)
net(X)

无须定义反向传播函数。系统将通过自动求梯度而自动生成反向传播所需的backward函数。

2、Module的子类

  • Sequential类:

当模型的前向计算为简单串联各个层的计算时,Sequential类可以通过更加简单的方式定义模型。它可以接收一个子模块的有序字典(OrderedDict)或者一系列子模块作为参数来逐一添加Module的实例,而模型的前向计算就是将这些实例按添加的顺序逐一计算。

实现原理如下:新引入:collections中的OrderedDict有序词典

class MySequential(nn.Module):
    from collections import OrderedDict
    def __init__(self, *args):
        super(MySequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDict
            for key, module in args[0].items():
                self.add_module(key, module)  # add_module方法会将module添加进self._modules(一个OrderedDict)
        else:  # 传入的是一些Module
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)
    def forward(self, input):
        # self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成员
        for module in self._modules.values():
            input = module(input)
        return input

 用MySequential类来实现前面描述的MLP类,并使用随机初始化的模型做一次前向计算。

net = MySequential(
        nn.Linear(784, 256),
        nn.ReLU(),
        nn.Linear(256, 10), 
        )
print(net)
net(X)
  • ModuleList类:

ModuleList接收一个子模块的列表作为输入,然后也可以类似List那样进行append和extend操作。

net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1])  # 类似List的索引访问
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError

输出:

Linear(in_features=256, out_features=10, bias=True)
ModuleList(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
)

 ModuleList仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现forward功能需要自己实现。Module的出现知识让网络定义前向传播时更加灵活。

Sequential内的模块需要按照顺序排列,保证相邻层的输入输出大小相匹配,内部的forward功能已经实现。

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])

    def forward(self, x):
        # ModuleList can act as an iterable, or be indexed using ints
        for i, l in enumerate(self.linears):
            x = self.linears[i // 2](x) + l(x)
        return x
  • ModuleDict类:

ModuleDict接收一个子模块的字典作为输入,然后也可以类似字典那样进行添加访问操作。

net = nn.ModuleDict({
    'linear': nn.Linear(784, 256),
    'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError

输出:

Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict(
  (act): ReLU()
  (linear): Linear(in_features=784, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)

 和ModuleList一样,ModuleDict实例仅仅是存放了一些模块的字典,并没有定义forward函数需要自己定义。同样,ModuleDict也与Python的Dict有所不同,ModuleDict里的所有模块的参数会被自动添加到整个网络中。

3、构造复杂的模型

 

虽然Sequential等类可以使模型构造更加简单,但直接继承Module类可以极大地拓展模型构造的灵活性。

小结

  • 可以通过继承Module类来构造模型。
  • SequentialModuleListModuleDict类都继承自Module类。
  • Sequential不同,ModuleListModuleDict并没有定义一个完整的网络,它们只是将不同的模块存放在一起,需要自己定义forward函数。
  • 虽然Sequential等类可以使模型构造更加简单,但直接继承Module类可以极大地拓展模型构造的灵活性。

二、模型参数的访问、初始化和共享

from torch.nn import init可以实现多种模型初始化方法。

通过Module类的parameters()或者named_parameters方法来访问所有参数(以迭代器的形式返回)。named_parameters除了返回参数Tensor外,还会返回其名字。

print(type(net.named_parameters()))
for name, param in net.named_parameters():
    print(name, param.size())

输出:

<class 'generator'>
0.weight torch.Size([3, 4])
0.bias torch.Size([3])
2.weight torch.Size([1, 3])
2.bias torch.Size([1])

返回的名字自动加上了层数的索引作为前缀。 我们再来访问net中单层的参数。对于使用Sequential类构造的神经网络,我们可以通过方括号[]来访问网络的任一层。索引0表示隐藏层为Sequential实例最先添加的层。

for name, param in net[0].named_parameters():
    print(name, param.size(), type(param))

输出:

weight torch.Size([3, 4]) <class 'torch.nn.parameter.Parameter'>
bias torch.Size([3]) <class 'torch.nn.parameter.Parameter'>

如果我们传入Sequential的模块是同一个Module实例的话参数也是共享的。

linear = nn.Linear(1, 1, bias=False)
net = nn.Sequential(linear, linear) 
print(net)
for name, param in net.named_parameters():
    init.constant_(param, val=3)
    print(name, param.data)

输出:

Sequential(
  (0): Linear(in_features=1, out_features=1, bias=False)
  (1): Linear(in_features=1, out_features=1, bias=False)
)
0.weight tensor([[3.]])

内存中,这两个线性层其实一个对象

print(id(net[0]) == id(net[1]))                        # True
print(id(net[0].weight) == id(net[1].weight))          # True

 因为模型参数里包含了梯度,所以在反向传播计算时,这些共享的参数的梯度是累加的:

x = torch.ones(1, 1)
y = net(x).sum()
print(y)
y.backward()
print(net[0].weight.grad) # 单次梯度是3,两次所以就是6

输出:

tensor(9., grad_fn=<SumBackward0>)
tensor([[6.]])

 三、自定义层

深度学习的一个魅力在于神经网络中各式各样的层,例如全连接层和后面章节中将要介绍的卷积层、池化层与循环层。本节将介绍如何使用Module来自定义层,从而可以被重复调用

1、不含模型参数的自定义层(运算操作层)

下面定义一个CenteredLayer类通过继承Module类自定义了一个将输入减掉均值后输出的层,并将层的计算定义在forward函数里。这个层里不含模型参数。

import torch
from torch import nn

class CenteredLayer(nn.Module):
    def __init__(self, **kwargs):
        super(CenteredLayer, self).__init__(**kwargs)
    def forward(self, x):
        return x - x.mean()

 实例化,做前向计算

layer = CenteredLayer()
layer(torch.tensor([1, 2, 3, 4, 5], dtype=torch.float))

输出:

tensor([-2., -1.,  0.,  1.,  2.])

也可以使用自定义层来构造模型。比如级联入序列模型,构造更复杂的模型。 

net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
y = net(torch.rand(4, 8))
y.mean().item()
# 输出0.0

2、含模型参数的的自定义层

Parameter类其实是Tensor的子类,如果一个TensorParameter,那么它会自动被添加到模型的参数列表里。所以在自定义含模型参数的层时,我们应该将参数定义成Parameter。使用ParameterListParameterDict分别定义参数的列表和字典

小结:

 

可以通过Module类自定义神经网络中的层,从而可以被重复调用。

四、读取和存储

1、读写Tensor

我们可以直接使用save函数和load函数分别存储和读取Tensorsave使用Python的pickle实用程序将对象进行序列化,然后将序列化的对象保存到disk,使用save可以保存各种对象,包括模型、张量和字典等。而load使用pickle unpickle工具将pickle的对象文件反序列化内存

import torch
from torch import nn

x = torch.ones(3)
torch.save(x, 'x.pt')

x2 = torch.load('x.pt')
x2

y = torch.zeros(4)
torch.save([x, y], 'xy.pt')
xy_list = torch.load('xy.pt')
xy_list

torch.save({'x': x, 'y': y}, 'xy_dict.pt')
xy = torch.load('xy_dict.pt')
xy

2、读写模型

在PyTorch中,Module的可学习参数(即权重和偏差),模块模型包含在参数中(通过model.parameters()访问)。state_dict是一个从参数名称隐射到参数Tesnor的字典对象。

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.hidden = nn.Linear(3, 2)
        self.act = nn.ReLU()
        self.output = nn.Linear(2, 1)

    def forward(self, x):
        a = self.act(self.hidden(x))
        return self.output(a)

net = MLP()
net.state_dict()

输出:

OrderedDict([('hidden.weight', tensor([[ 0.2448,  0.1856, -0.5678],
                      [ 0.2030, -0.2073, -0.0104]])),
             ('hidden.bias', tensor([-0.3117, -0.4232])),
             ('output.weight', tensor([[-0.4556,  0.4084]])),
             ('output.bias', tensor([-0.3573]))])

注意,只有具有可学习参数的层(卷积层、线性层等)才有state_dict中的条目。优化器(optim)也有一个state_dict,其中包含关于优化器状态以及所使用的超参数的信息。

optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
optimizer.state_dict()

 输出:

{'param_groups': [{'dampening': 0,
   'lr': 0.001,
   'momentum': 0.9,
   'nesterov': False,
   'params': [4736167728, 4736166648, 4736167368, 4736165352],
   'weight_decay': 0}],
 'state': {}}

 3、保存和加载模型

PyTorch中保存和加载训练模型有两种常见的方法:

  • 方式一:仅保存和加载模型参数(state_dict);  (推荐方式)

保存:

torch.save(model.state_dict(), PATH) # 推荐的文件后缀名是pt或pth

加载:

model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
  • 方式二:保存和加载整个模型

 保存:

torch.save(model, PATH)

加载:

model = torch.load(PATH)

 五、GPU计算

1、查看设备

torch.cuda.is_available()查看GPU是否可用:

import torch
from torch import nn

torch.cuda.is_available() # 输出 True

查看GPU数量:

torch.cuda.device_count() # 输出 1

查看当前GPU索引号,索引号从0开始:

torch.cuda.current_device() # 输出 0

根据索引号查看GPU名字:

torch.cuda.get_device_name(0) # 输出 'GeForce GTX 1050'

2、Tensor的GPU计算

默认情况下,Tensor会被存在内存上。因此,之前我们每次打印Tensor的时候看不到GPU相关标识。使用.cuda()可以将CPU上的Tensor转换(复制)到GPU上。如果有多块GPU,我们用.cuda(i)来表示第 iii 块GPU及相应的显存(iii从0开始)且cuda(0)cuda()等价。

如果对在GPU上的数据进行运算,那么结果还是存放在GPU上。

需要注意的是,存储在不同位置中的数据是不可以直接进行计算的。即存放在CPU上的数据不可以直接与存放在GPU上的数据进行运算位于不同GPU上的数据也是不能直接进行计算的

3、模型的GPU计算

Tensor类似,PyTorch模型也可以通过.cuda转换到GPU上。我们可以通过检查模型的参数的device属性来查看存放模型的设备。

同样的,我们需要保证模型输入的Tensor和模型都在同一设备上,否则会报错。

小结

  • PyTorch可以指定用来存储和计算的设备,如使用内存的CPU或者使用显存的GPU。在默认情况下,PyTorch会将数据创建在内存,然后利用CPU来计算。
  • PyTorch要求计算的所有输入数据都在内存同一块显卡显存上。


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值