HIVE优化(设置合理的map reduce的task数)
这里写目录标题
1 map阶段优化
1.1 map参数
1.2 map切分情况
1.3 主要的解决方式
2.reduce阶段优化
2.1 Reduce的个数
2.2 Hive自己如何确定reduce数
2.3 调整reduce个数方法一
2.4 调整reduce个数方法二
2.5 reduce个数并不是越多越好
2.6 什么情况下只有一个reduce
3.小文件合并优化
Hive优化之小文件问题及其解决方案:
小文件是如何产生的
小文件问题的影响
小文件问题的解决方案
map/reduce端的相关参数
1 map阶段优化
1.1 map参数
mapred.min.split.size:数据的最小分割单元;min值默认是1KB。
mapred.max.split.size:数据的最大分割单元;max值默认是256M。
通过调整max可以起到调整map数的作用,减小max可以增加map数;增加min可以减少map数。
注意:直接调整 mapred.map.task 这个参数是没有效果的。
1.2 map切分情况
-
假设input目录下有1个文件a,大小是780M,那么map默认参数会把a分成7块(6个128M和1个 12M),从而产生7个map。
-
假设input目录下有3个文件a,b,c,大小分别为10M,20M,130M,那么hadoop会把文件分成4块(10M,20M,128M,2M),从而产生4个map数。
注意:如果文件大于块大小(128M),那么会拆分,如果小于块大小,则把该文件当成一个块。
这就涉及到小文件的问题:如果一个任务有很多小文件(远远小于块大小128M),则每个小文件也会当做一个块,用一个map任务来完成。
而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。那么,是不是保证每个map处理接近128M的文件块,就高枕无忧了?答案也是不一定。比如有一个127M的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。
1.3 主要的解决方式
- 减少map的数量
假设一个SQL任务:
Select count(1) from popt_tbaccountcopy_meswhere pt = '2012-07-04';
该任务的inputdir : /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04
共有194个文件,其中很多事远远小于128M的小文件,总大小9G,正常执行会用194个map任务。
Map总共消耗的计算资源:SLOTS_MILLIS_MAPS= 623,020
通过以下方法来在map执行前合并小文件,减少map数:
set mapred.max.split.size=128000000; // 能分割块的最大块大小
set mapred.min.split.size.per.node=100000000; // 每个节点处理的最小split
set mapred.min.split.size.per.rack=100000000; // 每个机架处理的最小split
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; // 合并文件
再执行上面的语句,用了74个map任务,map消耗的计算资源:SLOTS_MILLIS_MAPS= 333,500
对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。
大概解释一下,100000000表示100M,
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;这个参数表示执行前进行小文件合并,
前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,
小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),
进行合并,最终生成了74个块。
- 增加map的数量
如何适当的增加map数?
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,
来使得每个map处理的数据量减少,从而提高任务的执行效率。
假设有这样一个任务:
Select data_desc,
count(1),
count(distinct id),
sum(case when ...),
sum(case when ...),
sum(...)
from a group by data_desc
如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,
这种情况下,我们要考虑将这一个文件合理的拆分成多个,
这样就可以用多个map任务去完成。
set mapred.reduce.tasks=10;
create table a_1 as
select * from a
distribute by rand(123);
这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。
每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。
- 注意:看上去,貌似这两种有些矛盾,一个是要合并小文件,一个是要把大文件拆成小文件,这点正是重点需要关注的地方,使单个map任务处理合适的数据量;
2.reduce阶段优化
2.1 Reduce的个数
Reduce的个数对整个作业的运行性能有很大影响。如果Reduce设置的过大,那么将会产生很多小文件,对NameNode会产生一定的影响,而且整个作业的运行时间未必会减少;如果Reduce设置的过小,那么单个Reduce处理的数据将会加大,很可能会引起OOM异常。
如果设置了mapred.reduce.tasks/mapreduce.job.reduces参数,那么Hive会直接使用它的值作为Reduce的个数;如果mapred.reduce.tasks/mapreduce.job.reduces的值没有设置(也就是-1),那么Hive会根据输入文件的大小估算出Reduce的个数。根据输入文件估算Reduce的个数可能未必很准确,因为Reduce的输入是Map的输出,而Map的输出可能会比输入要小,所以最准确的数根据Map的输出估算Reduce的个数。
2.2 Hive自己如何确定reduce数:
reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:
hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G)
hive.exec.reducers.max(每个任务最大的reduce数,默认为999)
计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)
即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务;
如:select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,因此这句有10个reduce
2.3 调整reduce个数方法一:
调整hive.exec.reducers.bytes.per.reducer参数的值;
set hive.exec.reducers.bytes.per.reducer=500000000; (500M)
select pt, count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
这次有20个reduce
2.4 调整reduce个数方法二
set mapred.reduce.tasks=15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
这次有15个reduce
2.5 reduce个数并不是越多越好
同map一样,启动和初始化reduce也会消耗时间和资源;
另外,有多少个reduce,就会有个多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;
2.6 什么情况下只有一个reduce;
很多时候你会发现任务中不管数据量多大,不管你有没有调整reduce个数的参数,任务中一直都只有一个reduce任务;其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因
1. 没有group by的汇总,比如把select pt,count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ group by pt; 写成select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’; 这点非常常3. 见,希望大家尽量改写。
2.用了Order by
3.有笛卡尔积。
注意:在设置reduce个数的时候也需要考虑这两个原则:使大数据量利用合适的reduce数;是单个reduce任务处理合适的数据量;
3.小文件合并优化
我们知道文件数目小,容易在文件存储端造成瓶颈,给HDFS带来压力,影响处理效率。对此,可以通过合并Map和Reduce的结果文件来消除这样的影响。
用于设置合并的参数有:
- 是否合并Map输出文件:hive.merge.mapfiles=true(默认值为true)
- 是否合并Reduce端输出文件:hive.merge.mapredfiles=false(默认值为false)
- 合并文件的大小:hive.merge.size.per.task=25610001000(默认值为256000000)
3.1 Hive优化之小文件问题及其解决方案:
小文件是如何产生的:
- 动态分区插入数据,产生大量的小文件,从而导致map数量剧增;
- reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的);
- 数据源本身就包含大量的小文件。
小文件问题的影响: - 从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。
- 在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存。这样NameNode内存容量严重制约了集群的扩展。
小文件问题的解决方案:
从小文件产生的途径就可以从源头上控制小文件数量,方法如下:
- 使用Sequencefile作为表存储格式,不要用textfile,在一定程度上可以减少小文件;
- 减少reduce的数量(可以使用参数进行控制);
- 少用动态分区,用时记得按distribute by分区;
对于已有的小文件,我们可以通过以下几种方案解决:
- 使用hadoop archive命令把小文件进行归档;
- 重建表,建表时减少reduce数量;
通过参数进行调节,设置map/reduce端的相关参数,如下
//每个Map最大输入大小(这个值决定了合并后文件的数量)
set mapred.max.split.size=256000000;
//一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)
set mapred.min.split.size.per.node=100000000;
//一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)
set mapred.min.split.size.per.rack=100000000;
//执行Map前进行小文件合并
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
设置map输出和reduce输出进行合并的相关参数:
[java] view plain copy
//设置map端输出进行合并,默认为true
set hive.merge.mapfiles = true
//设置reduce端输出进行合并,默认为false
set hive.merge.mapredfiles = true
//设置合并文件的大小
set hive.merge.size.per.task = 256*1000*1000
//当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge。
set hive.merge.smallfiles.avgsize=16000000