C. Liebig's Barrels

output
standard output

You have m = n·k wooden staves. The i-th stave has length ai. You have to assemble n barrels consisting of k staves each, you can use any k staves to construct a barrel. Each stave must belong to exactly one barrel.

Let volume vj of barrel j be equal to the length of the minimal stave in it.

You want to assemble exactly n barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed l, i.e. |vx - vy| ≤ l for any 1 ≤ x ≤ n and 1 ≤ y ≤ n.

Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above.

Input

The first line contains three space-separated integers nk and l (1 ≤ n, k ≤ 1051 ≤ n·k ≤ 1050 ≤ l ≤ 109).

The second line contains m = n·k space-separated integers a1, a2, ..., am (1 ≤ ai ≤ 109) — lengths of staves.

Output

Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly n barrels satisfying the condition |vx - vy| ≤ l for any 1 ≤ x ≤ n and 1 ≤ y ≤ n.

Examples
input
Copy
4 2 1
2 2 1 2 3 2 2 3
output
Copy
7
input
Copy
2 1 0
10 10
output
Copy
20
input
Copy
1 2 1
5 2
output
Copy
2
input
Copy
3 2 1
1 2 3 4 5 6
output
Copy
0
Note

In the first example you can form the following barrels: [1, 2][2, 2][2, 3][2, 3].

In the second example you can form the following barrels: [10][10].

In the third example you can form the following barrels: [2, 5].

In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.

题意:给你K*n木板每次拿出k快组成n个木桶 每个木桶的体积等于那个最短的木板长度求最大体积(所有桶的)。

思路:排序加贪心(每次尽可能让小的在一起)。

#include<bits/stdc++.h>

using namespace std;
const int maxn=1e5+50;
int a[maxn];
int vis[maxn];
int main(){
    int n,k,l;
    cin>>n>>k>>l;
    for(int i=1;i<=n*k;i++)
        cin>>a[i];
    sort(a+1,a+n*k+1);
    int pos;
    if(a[n]-a[1]>l){
        cout<<'0'<<endl;
         return 0;
    }else{
        for(int i=n;i<=n*k;i++){
            if(a[i]-a[1]>l){
                pos=i-1;
                break;
            }
        }
        long long ans=0;
        int cnt=0;
        for(int i=1;i<=pos;i+=k){
            ans+=a[i];
            cnt++;
            vis[i]=1;
            if(cnt==n)
                break;
        }
        if(cnt==n)
            cout<<ans<<endl;
        else{
            for(int i=pos;i>=1;i--){
                if(!vis[i]){
                    ans+=a[i];
                    cnt++;
                }
                if(cnt==n)
                    break;
            }
            cout<<ans<<endl;
        }

    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值