- 写程序MyWordCount.java
源文档 <http://hadoop.apache.org/docs/r0.18.3/mapred_tutorial.html>package org.myorg; import java.io.IOException; import java.util.*; import org.apache.hadoop.fs.Path; import org.apache.hadoop.conf.*; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.*; public class WordCount { public static void main(String[] args) throws Exception { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); //conf.setNumReduceTasks(0); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); //conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); } public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } }
注:conf.setInputFormat(TextInputFormat.class); //TextInputFormat是默认的InputFormat。这说明Map类的键是LongWritable类型,存储整个文件的字节偏移量,值是Text类型,是一行内容。StringTokenizer 把行按空格拆分成单词。
conf.setOutputFormat(TextOutputFormat.class); //输出格式为TextOutputFormat,把输出记录写成文本行。键值可以使任何类型,因为可以用toString()方法转成字符串。这里的输出键是Text类型,值是IntWritable类型。
2. 编译
Mkdir wordcountsource
hduser@ubuntu:/usr/local/hadoop$ javac -classpath hadoop-core-1.1.1.jar -d wordcountsource MyWordCount.java
编译java到wordcountsource文件夹下
如果出现错误:error while writing Map: could not create parent directories
说明没有写入input文件的权限
3.生成jar
hduser@ubuntu:/usr/local/hadoop$ sudo jar -cvf MyWordCount.jar -C wordcountsource/ .
在当前目录下生成MyWordCount.jar
4.在input文件夹下创建file0和file1
hduser@ubuntu:/usr/local/hadoop/input$ mkdir input //input文件夹为输入
hduser@ubuntu:/usr/local/hadoop/input$ sudo gedit file0
hduser@ubuntu:/usr/local/hadoop/input$ sudo gedit file1
5.运行MyWordCount.jar
hduser@ubuntu:/usr/local/hadoop$ sudo bin/hadoop jar MyWordCount.jar org.myorg.MyWordCount input output
确保有创建output的权限
6.查看结果
hduser@ubuntu:/usr/local/hadoop$ cat output/part-00000
Bye 1
Hello 1
World 2
转载