bzoj3411 [Usaco2009 Dec]Bobsledding 高山滑雪

题目

贪心题目。。

如果知道一段路程的起始速度和终点的限制速度,那么最大速度就可以很轻松的求出来。

但是,有一点值得注意,每一个点的速度限制可能是假的,因为如果到了最大速度,到下一个点速度可能降不下去。所以,就要先从后往前扫一遍来重新算速度。

之后就是分类讨论了。

#include<bits/stdc++.h>
#define N 100000
using namespace std;
int n,L,v,ans;
struct lim{
    int t,s;
    bool operator < (const lim &A)const
    {
        return t<A.t;
    }
};lim A[N+5];
inline char nc()
{
    static char buf[100000],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
    int x=0,b=1;
    char c=nc();
    for(;!(c<='9'&&c>='0');c=nc())if(c=='-')b=-1;
    for(;c<='9'&&c>='0';c=nc())x=x*10+c-'0';
    return x*b;
}
int main()
{
    freopen("in.txt","r",stdin);
    L=read(),n=read();
    for(int i=1;i<=n;i++)A[i].t=read(),A[i].s=read();
    sort(A+1,A+n+1);
    for(int i=n-1;i>=1;i--)A[i].s=(A[i].s-A[i+1].s>A[i+1].t-A[i].t?A[i+1].s+A[i+1].t-A[i].t:A[i].s);
    A[0].t=0;v=1,ans=0;
    for(int i=1;i<=n;i++)
    {
        int tmp=A[i].t-A[i-1].t;
        if(A[i].s>tmp+v)ans=max(ans,tmp+v),v+=tmp;
        else
        {
            if(v>A[i].s)
            {
                tmp-=(v-A[i].s);
                ans=max(ans,v+tmp/2);
            }else if(v<A[i].s)
            {
                tmp-=(A[i].s-v);
                ans=max(ans,A[i].s+tmp/2);
            }else if(v==A[i].s)
            {
                ans=max(ans,v+tmp/2);
            }
            v=A[i].s;
        }//讨论
    }
    ans=max(ans,v+L-A[n].t);//注意最后的加速
    cout<<ans;
    return 0;
} 
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值