1.红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
2.红黑树的性质
(1)每个结点不是红色就是黑色;
(2)根节点是黑色的 ;
(3)如果一个节点是红色的,则它的两个孩子结点是黑色的 ;
(4) 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点;
(5)每个叶子结点都是黑色的(此处的叶子结点指的是空结点)。
3.红黑树节点的定义
// 节点的颜色
enum Color{RED, BLACK};
// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{
RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _color(color)
{}
RBTreeNode<ValueType>* _pLeft; // 节点的左孩子
RBTreeNode<ValueType>* _pRight; // 节点的右孩子
RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给
出该字段)
ValueType _data; // 节点的值域
Color _color; // 节点的颜色
};
4.红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
1. 按照二叉搜索的树规则插入新节点
template<class ValueType>
class RBTree
{
//……
bool Insert(const ValueType& data)
{
PNode& pRoot = GetRoot();
if (nullptr == pRoot)
{
pRoot = new Node(data, BLACK);
// 根的双亲为头节点
pRoot->_pParent = _pHead;
_pHead->_pParent = pRoot;
}
else
{
// 1. 按照二叉搜索的树方式插入新节点
// 2. 检测新节点插入后,红黑树的性质是否造到破坏,
// 若满足直接退出,否则对红黑树进行旋转着色处理
}
// 根节点的颜色可能被修改,将其改回黑色
pRoot->_color = BLACK;
_pHead->_pLeft = LeftMost();
_pHead->_pRight = RightMost();
return true;
}
private:
PNode& GetRoot(){ return _pHead->_pParent;}
// 获取红黑树中最小节点,即最左侧节点
PNode LeftMost();
// 获取红黑树中最大节点,即最右侧节点
PNode RightMost();
private:
PNode _pHead;
};
2. 检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
情况一: cur为红,p为红,g为黑,u存在且为红
如果g是根节点,调整完成后,需要将g改为黑色;
如果g是子树,g一定有双亲,且g的双亲如果是红色,需要继续向上调整。
cur和p均为红,违反了性质三,此处能否将p直接改为黑?
解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑
说明:u的情况有两种
1.如果u节点不存在,则cur一定是新插入节点,因为如果cur不是新插入节点,则cur和p一定有一个节点的颜色是黑色,就不满足性质4。
2.如果u节点存在,则其一定是黑色的,那么cur节点原来的颜色一定是黑色的,现在看到其实红色的原因是因为cur的子树在调整的过程中将cur节点的颜色由黑色改成红色。
p为g的左孩子,cur为p的左孩子,则进行右单旋转;
相反, p为g的右孩子,cur为p的右孩子,则进行左单旋转;
p、g变色--p变黑,g变红
情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;
相反, p为g的右孩子,cur为p的左孩子,则针对p做右单旋转;
针对每种情况进行相应的处理即可。
bool Insert(const ValueType& data)
{
// ...
// 新节点插入后,如果其双亲节点的颜色为空色,则违反性质3:不能有连在一起的红色结
点
while(pParent && RED == pParent->_color)
{
// 注意:grandFather一定存在
// 因为pParent存在,且不是黑色节点,则pParent一定不是根,则其一定有双亲
PNode grandFather = pParent->_pParent;
// 先讨论左侧情况
if(pParent == grandFather->_pLeft)
{
PNode unclue = grandFather->_pRight;
// 情况三:叔叔节点存在,且为红
if(unclue && RED == unclue->_color)
{
pParent->_color = BLACK;
unclue->_color = BLACK;
grandFather->_color = RED;
pCur = grandFather;
pParent = pCur->_pParent;
}
else
{
// 情况五:叔叔节点不存在,或者叔叔节点存在且为黑
if(pCur == pParent->_pRight)
{
_RotateLeft(pParent);
swap(pParent, pCur);
}
// 情况五最后转化成情况四
grandFather->_color = RED;
pParent->_color = BLACK;
_RotateRight(grandFather);
}
}
else
{
// 右侧请学生们自己动手完成
}
}
// ...
}
5.红黑树的验证
红黑树的检测分为两步:
1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
2. 检测其是否满足红黑树的性质
bool IsValidRBTree()
{
PNode pRoot = GetRoot();
// 空树也是红黑树
if (nullptr == pRoot)
return true;
// 检测根节点是否满足情况
if (BLACK != pRoot->_color)
{
cout << "违反红黑树性质二:根节点必须为黑色" << endl;
return false;
}
// 获取任意一条路径中黑色节点的个数
size_t blackCount = 0;
PNode pCur = pRoot;
while (pCur)
{
if (BLACK == pCur->_color)
blackCount++;
pCur = pCur->_pLeft;
}
// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数
size_t k = 0;
return _IsValidRBTree(pRoot, k, blackCount);
}
bool _IsValidRBTree(PNode pRoot, size_t k, const size_t blackCount)
{
//走到null之后,判断k和black是否相等
if (nullptr == pRoot)
{
if (k != blackCount)
{
cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;
return false;
}
return true;
}
// 统计黑色节点的个数
if (BLACK == pRoot->_color)
k++;
// 检测当前节点与其双亲是否都为红色
PNode pParent = pRoot->_pParent;
if (pParent && RED == pParent->_color && RED == pRoot->_color)
{
cout << "违反性质三:没有连在一起的红色节点" << endl;
return false;
}
return _IsValidRBTree(pRoot->_pLeft, k, blackCount) &&
_IsValidRBTree(pRoot->_pRight, k, blackCount);
}