现代控制理论(4)——李雅普诺夫稳定性理论


一、李雅普诺夫关于稳定性的定义

系统 x ˙ = f ( x , t ) \dot x=f(x,t) x˙=f(x,t),若存在状态 x e x_e xe满足 x ˙ e ≡ 0 \dot x_e\equiv 0 x˙e0,则该状态为平衡状态

1.李氏意义下的稳定

系统对于任意选定的实数 ε > 0 \varepsilon>0 ε>0,都存在一个实数 δ > 0 \delta>0 δ>0,当满足 ∣ ∣ x 0 − x e ∣ ∣ ≤ δ ||x_0-x_e||\leq\delta x0xeδ
从任意 x 0 x_0 x0出发的解都满足 ∣ ∣ Φ − x e ∣ ∣ ≤ ε ||\Phi-x_e||\leq\varepsilon Φxeε
则称平衡状态为李氏意义下的稳定
在这里插入图片描述

2.渐近稳定

解最终收敛于 x e x_e xe
在这里插入图片描述

3.大范围渐近稳定

从状态空间中所有初始状态出发的轨线都具有渐近稳定性,称这种平衡状态 x e x_e xe为大范围内渐近稳定

4.不稳定

不管

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我阿亮就好了-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值