COMP 636: Web App management simulator


COMP 636: Web App Assessment – S2 2024 
Milestone submission due: 5pm Friday 4 October 2024 via Learn 
Final submission due: 5pm Tuesday 29 October 2024 via Learn 
Worth: 50% of COMP636 grade 
Submit via Akoraka | Learn, with files set up and available on GitHub and PythonAnywhere. 
Introduction 
Te Waihora farm management simulator (FMS) is a system that models stock management on a 
farm. The aim is for the farmer to simulate the number of stock (cows in this case) that the farm can 
maintain, with the amount of pasture (grass) that it has available for the stock to eat. 
Stock are kept in paddocks – a fenced area of pasture. The paddocks can grow pasture at a certain 
rate per day, so the aim is to keep moving stock between paddocks so that the pasture level does not 
get too low. Pasture above 1800 kg DM/ha is considered good, while levels below 1500 kg DM/ha 
are considered poor (below this, the ability of the grass to regrow can be affected). Stock are 
managed and moved between paddocks in groups called ‘mobs’. Each mob is moved as a whole 
group and each paddock can only have one mob (otherwise the mobs would get mixed up). 
The FMS simulates the ‘current date’, which can be moved ahead one day at a time, to calculate 
pasture growth and pasture consumption by the stock. (To be clear: ‘current date’ is not the actual 
date shown by the computer’s clock.) 
Terms and abbreviations: 
DM Dry matter (in kg) – the weight of the pasture with the water component removed. 
DM/ha Dry matter per hectare (kg DM/ha) = DM (in kg) divided by paddock area (in hectares). 
ha Hectares – a measure of paddock area (size). 
Pasture Grass that is eaten by stock. 
Stock Animals – cows in this case. 
Note: The requirements presented here are not exhaustive, you are expected to apply critical 
thought to them, and best practices taught in the course, as a key part of the software development 
process. Ask clarifying questions in the in-person or online support sessions. 
Download the web application files from the Assessment block on Learn. These will get you started, 
including for the Milestone. You will add more routes and templates as you develop your app. 
Important 
This is an individual assessment. You may not collaborate or confer with others. You 
may help others by verbally explaining concepts and making suggestions in general 
terms, but without directly showing or sharing your own code. You must develop the 
logical structure and the detail of your code on your own. No use of generative AI is 
permitted for any part of this assessment. 
Code or content that is copied, shares a similar logic to others or is produced by 
generative AI will receive zero marks for all parties involved. 
The university guidelines and policy on academic integrity can be found here. 
  

 
Milestone Submission (5 marks, due 4 October) 
This milestone is to ensure that your app is correctly configured, and any set-up issues are resolved 
early. The milestone does not require any changes to the code and templates provided. 
By this date you only need to sync and share the provided files on GitHub, provide us teacher access 
to your PythonAnywhere, and host the provided code on PythonAnywhere so that the web app and 
provided routes run correctly. 
Milestone Requirements 
1) Create a private GitHub repository called fms. 
a. Your web application (app.py, etc.) must be in the main folder of your repository 
(not in a subfolder) 
2) Host your web app on PythonAnywhere. 
a. Use files pulled from your GitHub repository. 
b. Your fms web app folder must be in your PythonAnywhere home directory (which 
should happen automatically when cloning the files from GitHub). 
c. Your MySQL database must be called fms and contain the required tables and data. 
3) The provided web application pages must load correctly in PythonAnywhere: 
a. Home page: / route; home.html template page. 
b. Mobs page: /mobs r

期末大作业基于python的足球运动员数据分析源码+数据集(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于pyth
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值