Keras 入门课4 -- 使用ResNet识别cifar10数据集

本教程介绍如何使用Keras构建ResNet网络识别cifar10数据集,涵盖函数式模型的使用、ResNet块的构建、模型训练及动态学习率调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Keras入门课4:使用ResNet识别cifar10数据集

本系列课程代码,欢迎star:
https://github.com/tsycnh/Keras-Tutorials

前面几节课都是用一些简单的网络来做图像识别,这节课我们要使用经典的ResNet网络对cifar10进行分类。

ResNet是何凯明大神提出的残差网络,具体论文见此

ResNet v1
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385.pdf
ResNet v2
Identity Mappings in Deep Residual Networks
https://arxiv.org/pdf/1603.05027.pdf

这一节课,我们只动手实现v1的一个精简版本(因为数据集cifar10的数据比较小)

import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten
from keras.optimizers import Adam
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import cifar10
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau
import numpy as np
import os
Using TensorFlow backend.
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170500096/170498071 [==============================] - 64s 0us/step
x_train = x_train/255
x_test = x_test/255
y_train = keras.utils.to_categorical(y_train,10)
y_test = keras.utils.to_categorical(y_test,10)

↓构建模型基本模块,ResNet Block

这里没有用Sequential模型,而是用了另外一种构建模型的方法,即函数式模型(Functional)
Sequential模型有一个缺陷,即网络只能一层一层的堆叠起来,无法处理分支网络的情况。比如ResNet或GoogleNet中的Inception模块。使用Functional模型,构建起模型来十分自由,可以组合成各种各样的网络,可以说Sequential模型是Functional模型的一个子集。

使用函数式模型很简单,直接在网络层模块后写一个括号,参数就是当前层的输入值,返回值就是当前层的输出值,比如:net = Conv2D(…)(inputs)

这里写图片描述

↓首先构建一个基本的block模块,就是上图的weight layer,这个模块包含了一个卷积层,一个BN层,一个激活层。可以看到上图下面那个layer没有激活层,所以函数内做了一个判断

BN层的作用是对输出参数做归一化,可以有效使网络更易训练。一般来说,加了BN层的网络,可以不必再用Dropout层。
同时这一次我们在卷积层中加入了L2正则化,目的是提升模型的泛化能力。

#ResNet Block
def resnet_block(inputs,num_filters=16,
                  kernel_size=3,strides=
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值