pytorch 介绍以及常用工具包展示

1. 引言

1.1 背景:神经网络和深度学习的崛起

  • 介绍神经网络和深度学习在计算机科学和人工智能中的重要性。

1.2 PyTorch简介:张量计算框架的演进

  • 回顾PyTorch作为张量计算框架的发展历程。

  • 强调其灵活性、动态计算图和深度学习社区的支持。

2. PyTorch基础

2.1 张量:PyTorch的核心数据结构

  • 创建和操作张量的基本操作,如加法、乘法等。

  • 张量的自动微分功能,介绍autograd模块。

2.2 动态计算图:与静态计算图框架的对比

  • 动态计算图的优势:更直观、更易调试。

  • 使用torchviz等工具实时可视化计算图。

3. PyTorch的核心概念

3.1 模型和参数

  • 通过nn.Module定义神经网络模型。

  • 模型的训练和参数的优化过程。

3.2 数据加载与预处理

  • 使用DataLoader加载数据集。

  • 数据增强和预处理技术的应用。

4. 神经网络构建

4.1 模型构建的两种方式

  • 通过继承nn.Module创建自定义模型。

  • 使用nn.Sequential构建简单的模型流程。

4.2 常见层与激活函数

  • 使用PyTorch中的常见层,如nn.Linearnn.Conv2d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R0ot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值