Description
给定一张
n
n
n 点
m
m
m 边的带权有向图
G
G
G。
对于每条边
(
u
i
,
v
i
,
w
i
)
(u_i,v_i,w_i)
(ui,vi,wi),求经过它的最短路径的条数,对
1
0
9
+
7
10^9+7
109+7 取模.
Limitations
1
≤
n
≤
1500
1\le n \le 1500
1≤n≤1500
1
≤
m
≤
3500
1\le m \le 3500
1≤m≤3500
1
≤
u
,
v
≤
n
1\le u,v\le n
1≤u,v≤n
1
≤
w
≤
10000
1\le w \le 10000
1≤w≤10000
Solution
不难想到暴力:枚举每对 ( s , t ) (s,t) (s,t),统计每个点到 s s s 和 t t t 的最短路数量,分别记为 a i , b i a_i,b_i ai,bi,则对边 ( u , v , w ) (u,v,w) (u,v,w) 的贡献为 a u b v a_ub_v aubv,可以拿到 60 pts 60\text{pts} 60pts.
接下来优化,我们发现可以只枚举
s
s
s,并将
G
G
G 上不在任何最短路中的边删掉,就会形成一个 DAG
,原因显然.
然后在 DAG
上按拓扑序正反跑两次,即可求出
a
i
,
b
i
a_i,b_i
ai,bi.
使用 Dijkstra
,时间复杂度
O
(
n
m
log
n
)
O(nm \log n)
O(nmlogn).
PS:跑最短路时即可求出 DAG
的拓扑序.
Code
5.02
KB
,
677
ms
,
680
KB
(in
total,
C++20
with
O2)
5.02\text{KB},677\text{ms},680\text{KB}\;\texttt{(in total, C++20 with O2)}
5.02KB,677ms,680KB(in total, C++20 with O2)
modint
删了.
// Problem: P2505 [HAOI2012] 道路
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P2505
// Memory Limit: 125 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
template <int MOD>
struct modint {}; // Removed
using Z = modint<1000000007>;
using pii = pair<int, int>;
constexpr int inf = 2e9;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
vector<vector<array<int, 3>>> adj(n);
for (int i = 0, u, v, w; i < m; i++) {
scanf("%d %d %d", &u, &v, &w);
u--, v--;
adj[u].push_back({v, w, i});
}
vector<int> dis(n), dot;
vector<bool> vis(n);
vector<Z> cnt1(n), cnt2(n), ans(m);
auto dij = [&](int s) {
fill(cnt1.begin(), cnt1.end(), 0);
fill(dis.begin(), dis.end(), inf);
fill(vis.begin(), vis.end(), false);
dot.clear();
priority_queue<pii, vector<pii>, greater<pii>> pq;
pq.emplace(0, s);
dis[s] = 0;
cnt1[s] = 1;
while (!pq.empty()) {
int u = pq.top().second;
pq.pop();
if (vis[u]) continue;
vis[u] = true;
dot.push_back(u);
for (auto [v, w, _] : adj[u]) {
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
cnt1[v] = cnt1[u];
pq.emplace(dis[v], v);
}
else if (dis[v] == dis[u] + w) cnt1[v] += cnt1[u];
}
}
reverse(dot.begin(), dot.end());
for (auto u : dot) {
cnt2[u] = 1;
for (auto [v, w, id] : adj[u])
if (dis[u] + w == dis[v]) {
cnt2[u] += cnt2[v];
ans[id] += cnt1[u] * cnt2[v];
}
}
};
for (int i = 0; i < n; i++) dij(i);
for (int i = 0; i < m; i++) printf("%d\n", ans[i].val);
return 0;
}