Description
给定一个长度为
n
n
n 且只包含 (
和 )
的字符串
s
s
s,有
m
m
m 个操作分两种:
- negate ( l , r ) \operatorname{negate}(l,r) negate(l,r):将 s l ∼ s r s_l\sim s_r sl∼sr 的括号翻转.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 s l ⋯ r s_{l\cdots r} sl⋯r 的最长合法括号子序列长度除以 2 2 2.
Limitations
1
≤
n
,
m
≤
5
×
1
0
5
1\le n,m\le 5\times 10^5
1≤n,m≤5×105
1
≤
l
≤
r
≤
n
1\le l\le r\le n
1≤l≤r≤n
保证数据随机.
1
s
,
512
MB
1\text{s},512\text{MB}
1s,512MB
Solution
显然用线段树,考虑如何合并答案.
每个节点维护
(
c
n
t
L
,
c
n
t
R
,
r
e
s
)
(cnt_L,cnt_R,res)
(cntL,cntR,res) 表示剩余左括号个数、剩余右括号个数和答案.
合并时先加上子节点的答案,然后消掉跨过
mid
\textit{mid}
mid 的
min
(
c
n
t
L
(
lson
)
,
c
n
t
R
(
rson
)
)
\min(cnt_L(\textit{lson}),cnt_R(\textit{rson}))
min(cntL(lson),cntR(rson)) 对括号.
区间取反就多维护一个反串的信息,修改的时候可以直接交换.
时间复杂度
O
(
m
log
n
)
O(m\log n)
O(mlogn).
Code
2.81 KB , 7.24 s , 35.33 MB (in total, C++20 with O2) 2.81\text{KB},7.24\text{s},35.33\text{MB}\;\texttt{(in total, C++20 with O2)} 2.81KB,7.24s,35.33MB(in total, C++20 with O2)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
struct Data {
int cntL = 0, cntR = 0, res = 0;
inline Data() {}
inline Data(int _cntL, int _cntR, int _res) : cntL(_cntL), cntR(_cntR), res(_res) {}
};
inline Data operator+(const Data& lhs, const Data& rhs) {
const int tmp = min(lhs.cntL, rhs.cntR);
return Data(lhs.cntL + rhs.cntL - tmp,
lhs.cntR + rhs.cntR - tmp,
lhs.res + rhs.res + tmp);
}
namespace seg_tree {
struct Node {
int l, r;
array<Data, 2> dat;
bool rev = false;
};
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
struct SegTree {
vector<Node> tr;
inline SegTree() {}
inline SegTree(const string& s) {
const int n = s.size();
tr.resize(n << 1);
build(0, 0, n - 1, s);
}
inline void pushup(int u, int mid) {
tr[u].dat[0] = tr[ls(mid)].dat[0] + tr[rs(mid)].dat[0];
tr[u].dat[1] = tr[ls(mid)].dat[1] + tr[rs(mid)].dat[1];
}
inline void apply(int u) {
tr[u].rev ^= 1;
swap(tr[u].dat[0], tr[u].dat[1]);
}
inline void pushdown(int u, int mid) {
if (!tr[u].rev) return;
apply(ls(mid)), apply(rs(mid));
tr[u].rev = 0;
}
void build(int u, int l, int r, const string& s) {
tr[u].l = l, tr[u].r = r;
if (l == r) {
tr[u].dat[0] = Data(s[l] == '(', s[l] == ')', 0);
tr[u].dat[1] = Data(s[l] == ')', s[l] == '(', 0);
return;
}
const int mid = (l + r) >> 1;
build(ls(mid), l, mid, s);
build(rs(mid), mid + 1, r, s);
pushup(u, mid);
}
void negate(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return apply(u);
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) negate(ls(mid), l, r);
if (r > mid) negate(rs(mid), l, r);
pushup(u, mid);
}
Data query(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].dat[0];
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (r <= mid) return query(ls(mid), l, r);
else if (l > mid) return query(rs(mid), l, r);
else return query(ls(mid), l, r) + query(rs(mid), l, r);
}
};
}
using seg_tree::SegTree;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n; scanf("%d", &n);
string s; s.resize(n);
scanf("%s", &s[0]);
SegTree seg(s);
int m; scanf("%d", &m);
for (int i = 0, op, l, r; i < m; i++) {
scanf("%d %d %d", &op, &l, &r), l--, r--;
if (op == 1) seg.negate(0, l, r);
else printf("%d\n", seg.query(0, l, r).res);
}
return 0;
}