P10045 [CCPC 2023 北京市赛] 线段树 Solution

Description

给定序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),有 m m m 个操作分两种:

  • add ⁡ ( l , r , x ) \operatorname{add}(l,r,x) add(l,r,x):对每个 i ∈ [ l , r ] i\in[l,r] i[l,r] 执行 a i ← a i + x a_i\gets a_i+x aiai+x.
  • query ⁡ ( l , r ) \operatorname{query}(l,r) query(l,r):求 ( ∏ i = l r a i )   m o d   2 20 (\prod\limits_{i=l}^r a_i) \bmod 2^{20} (i=lrai)mod220.

Limitations

1 ≤ n , m ≤ 2 × 10 5 1 \le n,m \le 2\times 10^5 1n,m2×105
1 ≤ l ≤ r ≤ n 1 \le l \le r \le n 1lrn
1 ≤ a < 2 20 1 \le a < 2^{20} 1a<220,且为奇数.
0 ≤ x < 2 20 0 \le x < 2^{20} 0x<220,且为偶数.
4 s , 1 GB 4\text{s},1\text{GB} 4s,1GB

Solution

使用线段树,每个点维护多项式 ∏ i = l r ( a i + x ) \prod\limits_{i=l}^r(a_i+x) i=lr(ai+x),不妨设 f i = [ x i ] ∏ i = l r ( a i + x ) f_i=[x^i]\prod\limits_{i=l}^r(a_i+x) fi=[xi]i=lr(ai+x).
考虑区间加 k k k,由于 k k k 为偶数,可以用二项式定理,得到:
f i ′ = ∑ i = 0 ∑ j = 0 ( k j × f i + j × ( i + j j ) ) f^{\prime}_i=\sum\limits_{i=0}\sum\limits_{j=0}(k^j\times f_{i+j}\times \binom{i+j}{j}) fi=i=0j=0(kj×fi+j×(ji+j)).
不难发现只用维护 f 0 ∼ f 19 f_0 \sim f_{19} f0f19.
因此时间复杂度 O ( c 2 n log ⁡ n ) O(c^2n\log n) O(c2nlogn),空间复杂度 O ( c n ) O(cn) O(cn),其中 c = 20 c=20 c=20 为项数.
要卡常,用 & 1048575 代替 % 1048576 可显著加快速度.

Code

4.39 KB , 3.62 s , 30.73 MB    (in   total,   C++20   with   O2) 4.39\text{KB},3.62\text{s},30.73\text{MB}\;\texttt{(in total, C++20 with O2)} 4.39KB,3.62s,30.73MB(in total, C++20 with O2)
fastio 删了.

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

constexpr int mask = 1048575, L = 20;

namespace fastio {}
using fastio::read;
using fastio::write;

namespace poly {
	array<array<int, L + 1>, L + 1> C;
	
	struct Poly {
		vector<int> p;
		inline Poly() {}
		inline Poly(int val) : p(2) { p[0] = val; p[1] = 1; }
		inline void resize(int n) { p.resize(n); }
		inline int size() const { return p.size(); }
		inline int& operator[](int i) { return p[i]; }
		inline int operator[](int i) const { return p[i]; }
	};
	
	Poly operator*(const Poly& a, const Poly& b) {
		const int n = a.size(), m = b.size();
		Poly c; c.resize(min(n + m - 1, L));
		for (int i = 0; i < n; i++)
			for (int j = 0; j < m && i + j < L; j++)
				c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) & mask;
		return c;
	}
	
	Poly operator+(const Poly& a, int k) {
		const int l = a.size();
		Poly r; r.resize(l);
		for (int i = 0; i < l; i++) {
			for (int j = 0, pw = 1; i + j < l; j++) {
				r[i] = (((1LL * pw * a[i + j]) & mask) * C[i + j][j] + r[i]) & mask;
				pw = (1LL * pw * k) & mask;
			}	
		}
		return r;
	}
	
	inline void init() {
		for (int i = 0; i <= L; i++) {
			C[i][0] = 1;
			for (int j = 1; j <= i; j++)
				C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) & mask;
		}
	}
}

namespace seg_tree {
	using poly::Poly;
	struct Node {
		int l, r, tag;
		Poly poly;
	};
	
	inline int ls(int u) { return 2 * u + 1; }
	inline int rs(int u) { return 2 * u + 2; }
	
	struct SegTree {
		vector<Node> tr;
		SegTree() {}
		SegTree(const vector<int>& a) {
			const int n = a.size();
			tr.resize(n << 1);
		    build(0, 0, n - 1, a);
		}
		
		inline void pushup(int u, int mid) {
			tr[u].poly = tr[ls(mid)].poly * tr[rs(mid)].poly;
		}
		
		inline void apply(int u, int k) {
			tr[u].tag = (tr[u].tag + k) & mask;
			tr[u].poly = tr[u].poly + k;
		}
		
		inline void pushdown(int u, int mid) {
			if (!tr[u].tag) return;
			apply(ls(mid), tr[u].tag), apply(rs(mid), tr[u].tag);
			tr[u].tag = 0;
		}
		
		inline void build(int u, int l, int r, const vector<int>& a) {
			tr[u].l = l, tr[u].r = r;
			if (l == r) {
				tr[u].poly = a[l];
				return;
			}
			const int mid = (l + r) >> 1;
			build(ls(mid), l, mid, a), build(rs(mid), mid + 1, r, a);
			pushup(u, mid);
		}
		
		inline void add(int u, int l, int r, int k) {
			if (l <= tr[u].l && tr[u].r <= r) return apply(u, k);
			const int mid = (tr[u].l + tr[u].r) >> 1;
			pushdown(u, mid);
			if (l <= mid) add(ls(mid), l, r, k);
			if (r > mid) add(rs(mid), l, r, k);
			pushup(u, mid);
		}
		
		inline int query(int u, int l, int r) {
			if (l <= tr[u].l && tr[u].r <= r) return tr[u].poly[0];
			const int mid = (tr[u].l + tr[u].r) >> 1;
			int res = 1;
			pushdown(u, mid);
			if (l <= mid) res = (res * query(ls(mid), l, r)) & mask;
			if (r > mid) res = (res * query(rs(mid), l, r)) & mask;
			return res;
		}
		
		inline void range_add(int l, int r, int x) { add(0, l, r, x); }
		inline int range_prod(int l, int r) { return query(0, l, r); }
	};
}

using poly::init;
using seg_tree::SegTree;

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	const int n = read<int>(), m = read<int>();
	vector<int> a(n);
	for (int i = 0; i < n; i++) a[i] = read<int>();
	
	init();
	SegTree sgt(a);
	for (int i = 0; i < m; i++) {
		int op = read<int>(), l = read<int>(), r = read<int>();
		l--, r--;
		if (op == 1) sgt.range_add(l, r, read<int>());
		else write(sgt.range_prod(l, r)), putchar_unlocked('\n');
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值