Seperation of uncollided and Collided Intensities
For one dimensional RTM of canopy, let the illumination is
F
i
n
(
L
=
0
)
=
1
F_{in}(L=0)=1
Fin(L=0)=1 and isotropic skylight is thus
−
μ
∂
∂
L
I
(
L
,
Ω
)
+
G
(
L
,
Ω
)
I
(
L
,
Ω
)
=
1
π
∫
4
π
d
Ω
′
Γ
(
Ω
′
,
Ω
)
I
(
L
,
Ω
′
)
I
(
L
=
0
,
Ω
)
=
f
d
i
r
∣
μ
0
∣
δ
(
Ω
,
Ω
0
)
+
1
−
f
d
i
r
π
I
(
L
=
L
H
,
Ω
)
=
1
π
∫
2
π
−
I
(
L
=
L
H
,
Ω
′
)
ρ
b
(
Ω
′
,
Ω
)
∣
μ
′
∣
d
Ω
′
\begin{aligned} & -\mu\frac{\partial }{\partial L}I(L,\Omega)+G(L,\Omega)I(L,\Omega)=\frac{1}{\pi}\int_{4\pi}d\Omega'\Gamma(\Omega',\Omega)I(L,\Omega')\\ &I(L=0,\Omega)=\frac{f_{dir}}{|\mu_0|}\delta(\Omega,\Omega_0)+\frac{1-f_{dir}}{\pi}\\ &I(L=L_H,\Omega)=\frac{1}{\pi}\int_{2\pi-}I(L=L_H,\Omega')\rho_b(\Omega',\Omega)|\mu'|d\Omega' \end{aligned}
−μ∂L∂I(L,Ω)+G(L,Ω)I(L,Ω)=π1∫4πdΩ′Γ(Ω′,Ω)I(L,Ω′)I(L=0,Ω)=∣μ0∣fdirδ(Ω,Ω0)+π1−fdirI(L=LH,Ω)=π1∫2π−I(L=LH,Ω′)ρb(Ω′,Ω)∣μ′∣dΩ′
For numerical purposes, we seperate the uncollided radiation field from collided fields, that is
I
(
L
,
Ω
)
=
I
0
(
L
,
Ω
)
+
I
c
(
L
,
Ω
)
I(L,\Omega)=I^0(L,\Omega)+I^c(L,\Omega)
I(L,Ω)=I0(L,Ω)+Ic(L,Ω)
where
I
0
I^0
I0 specific intensity of uncollided photons and
I
c
I^c
Ic is the specific intensity of photons which experienced collisions with elements of host medium. Then ,we substitude the Eq. (2) into Eq. (1), we have:
−
μ
∂
∂
L
I
0
(
L
,
Ω
)
+
G
(
L
,
Ω
)
I
0
(
L
,
Ω
)
=
0
I
0
(
L
=
0
,
Ω
)
=
f
d
i
r
∣
μ
0
∣
δ
(
Ω
,
Ω
0
)
+
1
−
f
d
i
r
π
,
μ
<
0
I
0
(
L
=
L
H
,
Ω
)
=
1
π
∫
2
π
−
d
Ω
′
I
0
(
L
=
L
H
,
Ω
′
)
∣
μ
′
∣
ρ
b
(
Ω
′
,
Ω
)
,
μ
<
0
\begin{aligned} & -\mu\frac{\partial }{\partial L}I^0(L,\Omega)+G(L,\Omega)I^0(L,\Omega)=0\\ & I^0(L=0, \Omega) =\frac{f_{dir}}{|\mu_0|}\delta(\Omega,\Omega_0)+\frac{1-f_{dir}}{\pi}, \mu <0\\ &I^0(L=L_H,\Omega)=\frac{1}{\pi}\int_{2\pi-}d\Omega'I^0(L=L_H,\Omega')|\mu'|\rho_b(\Omega',\Omega),\mu<0 \end{aligned}
−μ∂L∂I0(L,Ω)+G(L,Ω)I0(L,Ω)=0I0(L=0,Ω)=∣μ0∣fdirδ(Ω,Ω0)+π1−fdir,μ<0I0(L=LH,Ω)=π1∫2π−dΩ′I0(L=LH,Ω′)∣μ′∣ρb(Ω′,Ω),μ<0
and coollided intensity
−
μ
∂
∂
L
I
C
(
L
,
Ω
)
+
G
(
L
,
Ω
)
I
C
(
L
,
Ω
)
=
Q
(
L
,
Ω
)
+
S
(
L
,
Ω
)
I
C
(
L
=
0
,
Ω
)
=
0
,
μ
<
0
I
C
(
L
=
L
H
,
Ω
)
=
1
π
∫
2
π
−
d
Ω
′
I
C
(
L
=
L
H
,
Ω
′
)
∣
μ
′
∣
ρ
b
(
Ω
′
,
Ω
)
,
μ
>
0
\begin{aligned} & -\mu\frac{\partial }{\partial L}I^C(L,\Omega)+G(L,\Omega)I^C(L,\Omega)= Q(L,\Omega)+S(L,\Omega)\\ & I^C(L=0, \Omega) = 0, \mu<0\\ &I^C(L=L_H,\Omega)=\frac{1}{\pi}\int_{2\pi-}d\Omega'I^C(L=L_H,\Omega')|\mu'|\rho_b(\Omega',\Omega), \mu>0 \end{aligned}
−μ∂L∂IC(L,Ω)+G(L,Ω)IC(L,Ω)=Q(L,Ω)+S(L,Ω)IC(L=0,Ω)=0,μ<0IC(L=LH,Ω)=π1∫2π−dΩ′IC(L=LH,Ω′)∣μ′∣ρb(Ω′,Ω),μ>0
Here,
Q
(
L
,
Ω
)
=
1
π
∫
4
π
Γ
(
Ω
′
,
Ω
)
∣
μ
∣
I
0
(
L
,
Ω
′
)
d
Ω
′
Q(L,\Omega)=\frac{1}{\pi} \int_{4\pi}\Gamma(\Omega',\Omega)|\mu|I^0(L,\Omega')d\Omega'
Q(L,Ω)=π1∫4πΓ(Ω′,Ω)∣μ∣I0(L,Ω′)dΩ′ and
S
(
L
,
Ω
)
=
1
π
∫
4
π
Γ
(
Ω
′
,
Ω
)
∣
μ
∣
I
C
(
L
,
Ω
′
)
d
Ω
′
S(L,\Omega)=\frac{1}{\pi} \int_{4\pi}\Gamma(\Omega',\Omega)|\mu|I^C(L,\Omega')d\Omega'
S(L,Ω)=π1∫4πΓ(Ω′,Ω)∣μ∣IC(L,Ω′)dΩ′.
Uncollided problem
To solve Eq. (3), we have that
1
I
0
(
L
,
Ω
)
d
I
0
(
L
,
Ω
)
=
G
(
L
,
Ω
)
d
L
/
μ
→
l
n
I
0
(
L
,
Ω
)
=
1
μ
∫
0
L
G
(
L
,
Ω
)
d
L
+
c
=
G
L
+
c
\begin{aligned} &\frac{1}{I^0(L,\Omega)}d I^0(L,\Omega) = G(L,\Omega) d L/\mu\\ &\rightarrow lnI^0(L,\Omega) = \frac{1}{\mu}\int_0^LG(L,\Omega)dL + c=GL+c \end{aligned}
I0(L,Ω)1dI0(L,Ω)=G(L,Ω)dL/μ→lnI0(L,Ω)=μ1∫0LG(L,Ω)dL+c=GL+c
Using the first boundary condtions , we have
c
=
l
n
I
0
(
L
=
0
,
Ω
)
c=lnI^0(L=0,\Omega)
c=lnI0(L=0,Ω)
Then we have
I
0
(
L
,
Ω
)
=
I
0
(
L
=
0
,
Ω
)
e
1
μ
G
L
,
μ
>
0
I^0(L,\Omega)=I^0(L=0,\Omega)e^{\frac{1}{\mu}GL}, \mu >0
I0(L,Ω)=I0(L=0,Ω)eμ1GL,μ>0
Using the second boundary conditions, we have
l
n
I
0
(
L
=
L
H
,
Ω
)
=
G
L
H
+
c
→
c
=
l
n
I
0
(
r
,
Ω
)
−
G
L
H
→
l
n
I
0
(
L
,
Ω
)
=
1
μ
G
L
−
G
L
H
+
l
n
I
0
(
r
,
Ω
)
→
I
0
(
r
,
Ω
)
=
I
0
(
r
,
Ω
)
e
1
μ
G
(
L
−
L
H
)
,
μ
<
0
\begin{aligned} &lnI^0(L=L_H,\Omega) = GL_H +c\\ &\rightarrow c=lnI^0(r,\Omega)-GL_H\\ &\rightarrow lnI^0(L,\Omega)=\frac{1}{\mu}GL-GL_H + lnI^0(r,\Omega)\\ &\rightarrow I^0(r,\Omega)= I^0(r,\Omega)e^{\frac{1}{\mu}G(L-L_H)}, \mu <0 \end{aligned}
lnI0(L=LH,Ω)=GLH+c→c=lnI0(r,Ω)−GLH→lnI0(L,Ω)=μ1GL−GLH+lnI0(r,Ω)→I0(r,Ω)=I0(r,Ω)eμ1G(L−LH),μ<0
Sumarizing these equations, we have
I
0
(
L
,
Ω
)
=
I
0
(
L
=
0
,
Ω
)
P
[
Ω
,
(
L
−
0
)
]
,
μ
<
0
I
0
(
L
,
Ω
)
=
I
0
(
L
=
L
H
,
Ω
)
P
[
Ω
,
(
L
H
−
L
)
]
,
μ
>
0
\begin{aligned} &I^0(L,\Omega)=I^0(L=0,\Omega)P[\Omega,(L-0)], \mu<0\\ &I^0(L,\Omega)=I^0(L=L_H,\Omega)P[\Omega,(L_H-L)], \mu >0 \end{aligned}
I0(L,Ω)=I0(L=0,Ω)P[Ω,(L−0)],μ<0I0(L,Ω)=I0(L=LH,Ω)P[Ω,(LH−L)],μ>0
where
P
[
Ω
,
(
L
2
−
L
1
)
]
=
e
x
p
[
−
1
μ
G
(
Ω
)
(
L
2
−
L
1
)
]
P[\Omega,(L_2-L_1)]=exp[-\frac{1}{\mu}G(\Omega)(L_2-L_1)]
P[Ω,(L2−L1)]=exp[−μ1G(Ω)(L2−L1)]
Then, Here,
I
0
(
L
=
0
,
Ω
)
I^0(L=0,\Omega)
I0(L=0,Ω) is given by boundary condition, and the upward intensity at the canopy lower bound is given by
I
0
(
L
=
L
H
,
Ω
)
=
1
π
∫
2
π
−
d
Ω
′
ρ
s
(
Ω
′
,
Ω
)
I
(
L
=
L
H
,
Ω
′
)
∣
μ
′
∣
,
μ
>
0
I^0(L=L_H,\Omega)=\frac{1}{\pi}\int_{2\pi-}d\Omega'\rho_s(\Omega',\Omega)I(L=L_H,\Omega')|\mu'|, \mu>0
I0(L=LH,Ω)=π1∫2π−dΩ′ρs(Ω′,Ω)I(L=LH,Ω′)∣μ′∣,μ>0
First Collision Problem
Supposes the
S
S
S is very weak, we have
−
μ
∂
∂
L
I
1
(
L
,
Ω
)
+
G
(
Ω
)
I
1
(
L
,
Ω
)
=
Q
(
L
,
Ω
)
I
1
(
L
=
0
,
Ω
)
=
0
I
1
(
L
=
L
H
,
Ω
)
=
1
π
∫
2
π
−
d
Ω
′
ρ
s
(
Ω
′
,
Ω
)
∣
μ
′
∣
I
1
(
L
=
L
H
,
Ω
′
)
,
μ
>
0
\begin{aligned} &-\mu\frac{\partial}{\partial L}I^1(L,\Omega)+G(\Omega)I^1(L,\Omega)=Q(L,\Omega)\\ &I^1(L=0,\Omega)=0\\ &I^1(L=L_H,\Omega)=\frac{1}{\pi}\int_{2\pi-}d\Omega'\rho_s(\Omega',\Omega)|\mu'|I^1(L=L_H,\Omega'), \mu>0 \end{aligned}
−μ∂L∂I1(L,Ω)+G(Ω)I1(L,Ω)=Q(L,Ω)I1(L=0,Ω)=0I1(L=LH,Ω)=π1∫2π−dΩ′ρs(Ω′,Ω)∣μ′∣I1(L=LH,Ω′),μ>0
To solve this problem, we rewrite the Eq.(12) into
∂
I
1
(
L
,
Ω
)
∂
L
−
G
(
Ω
)
I
1
(
L
,
Ω
)
μ
=
−
Q
(
L
,
Ω
)
μ
\frac{\partial I^1(L,\Omega)}{\partial L}-\frac{G(\Omega)I^1(L,\Omega)}{\mu}=-\frac{Q(L,\Omega)}{\mu}
∂L∂I1(L,Ω)−μG(Ω)I1(L,Ω)=−μQ(L,Ω)
Then using integral factor method:
F
(
L
)
=
e
x
p
[
∫
G
(
Ω
)
d
L
/
μ
]
=
e
G
L
/
μ
F(L)=exp[\int G(\Omega)dL/\mu]=e^{GL/\mu}
F(L)=exp[∫G(Ω)dL/μ]=eGL/μ
then we have
e
G
L
/
μ
I
1
(
L
,
Ω
)
=
−
1
μ
∫
e
G
L
′
/
μ
Q
(
L
′
,
Ω
)
d
L
′
+
c
\begin{aligned} e^{GL/\mu}I^1(L,\Omega)=-\frac{1}{\mu}\int e^{GL'/\mu}Q(L',\Omega)dL'+c \end{aligned}
eGL/μI1(L,Ω)=−μ1∫eGL′/μQ(L′,Ω)dL′+c
Using upper boundary condition, we have
c
=
1
μ
[
∫
e
G
L
′
Q
(
L
′
,
Ω
)
d
L
′
]
L
=
0
,
μ
<
0
c=\frac{1}{\mu}[\int e^{GL'}Q(L',\Omega)dL']_{L=0}, \mu <0
c=μ1[∫eGL′Q(L′,Ω)dL′]L=0,μ<0
Thus
I
1
(
L
,
Ω
)
=
−
1
μ
∫
0
L
e
G
μ
(
L
′
−
L
)
Q
(
L
′
,
Ω
)
d
L
′
=
−
1
μ
∫
0
L
e
−
G
μ
(
L
−
L
′
)
Q
(
L
′
,
Ω
)
d
L
′
=
1
∣
μ
∣
∫
0
L
Q
(
L
′
,
Ω
)
P
[
Ω
,
(
L
−
L
′
)
]
d
L
′
,
μ
<
0
\begin{aligned} I^1(L,\Omega)&=-\frac{1}{\mu}\int_0^L e^{\frac{G}{\mu}(L'-L)}Q(L',\Omega)dL'\\ &=-\frac{1}{\mu}\int_0^L e^{-\frac{G}{\mu}(L-L')}Q(L',\Omega)dL'\\ &=\frac{1}{|\mu|}\int_0^LQ(L',\Omega)P[\Omega,(L-L')]dL', \mu <0 \end{aligned}
I1(L,Ω)=−μ1∫0LeμG(L′−L)Q(L′,Ω)dL′=−μ1∫0Le−μG(L−L′)Q(L′,Ω)dL′=∣μ∣1∫0LQ(L′,Ω)P[Ω,(L−L′)]dL′,μ<0
For lower bound condtion, we have
e
G
L
H
I
1
(
L
=
L
H
,
Ω
)
+
[
1
μ
∫
e
G
L
′
/
μ
Q
(
L
′
,
Ω
)
d
L
′
]
L
=
L
H
=
c
,
μ
>
0
e^{GL_H}I^1(L=L_H,\Omega) + [\frac{1}{\mu}\int e^{GL'/\mu}Q(L',\Omega)dL']_{L=L_H} = c, \mu >0
eGLHI1(L=LH,Ω)+[μ1∫eGL′/μQ(L′,Ω)dL′]L=LH=c,μ>0
Then we have
e
G
L
/
μ
I
1
(
L
,
Ω
)
=
−
1
μ
∫
e
G
L
′
/
μ
Q
(
L
′
,
Ω
)
d
L
′
+
e
G
L
H
I
1
(
L
=
L
H
,
Ω
)
+
[
1
μ
∫
e
G
L
′
/
μ
Q
(
L
′
,
Ω
)
d
L
′
]
L
=
L
H
,
μ
>
0
\begin{aligned} e^{GL/\mu}I^1(L,\Omega)=&-\frac{1}{\mu}\int e^{GL'/\mu}Q(L',\Omega)dL'+ e^{GL_H}I^1(L=L_H,\Omega) \\&+ [\frac{1}{\mu}\int e^{GL'/\mu}Q(L',\Omega)dL']_{L=L_H}, \mu > 0 \end{aligned}
eGL/μI1(L,Ω)=−μ1∫eGL′/μQ(L′,Ω)dL′+eGLHI1(L=LH,Ω)+[μ1∫eGL′/μQ(L′,Ω)dL′]L=LH,μ>0
which is equal
e
G
L
/
μ
I
1
(
L
,
Ω
)
=
1
∣
μ
∣
∫
L
′
L
H
e
G
L
′
/
μ
Q
(
L
′
,
Ω
)
d
L
′
+
e
G
L
H
I
1
(
L
=
L
H
,
Ω
)
,
μ
>
0
→
I
1
(
L
,
Ω
)
=
1
∣
μ
∣
∫
L
′
L
H
e
G
(
L
′
−
L
)
/
μ
Q
(
L
′
,
Ω
)
d
L
′
+
e
G
(
L
H
−
L
)
I
1
(
L
=
L
H
,
Ω
)
,
μ
>
0
\begin{aligned} &e^{GL/\mu}I^1(L,\Omega)=\frac{1}{|\mu|}\int_{L'}^{L_H}e^{GL'/\mu}Q(L',\Omega)dL'+e^{GL_H}I^1(L=L_H,\Omega), \mu >0\\ &\rightarrow I^1(L,\Omega)=\frac{1}{|\mu|}\int_{L'}^{L_H}e^{G(L'-L)/\mu}Q(L',\Omega)dL'+e^{G(L_H-L)}I^1(L=L_H,\Omega), \mu >0 \end{aligned}
eGL/μI1(L,Ω)=∣μ∣1∫L′LHeGL′/μQ(L′,Ω)dL′+eGLHI1(L=LH,Ω),μ>0→I1(L,Ω)=∣μ∣1∫L′LHeG(L′−L)/μQ(L′,Ω)dL′+eG(LH−L)I1(L=LH,Ω),μ>0
Combining the Eq. (17) and Eq. (20), we have:
I
1
(
L
,
Ω
)
=
1
∣
μ
∣
∫
0
L
d
L
′
Q
(
L
′
,
Ω
)
P
[
Ω
,
L
−
L
′
]
,
μ
<
0
I^1(L,\Omega)=\frac{1}{|\mu|}\int_0^LdL'Q(L',\Omega)P[\Omega,L-L'], \mu<0
I1(L,Ω)=∣μ∣1∫0LdL′Q(L′,Ω)P[Ω,L−L′],μ<0
I 1 ( L , Ω ) = 1 ∣ μ ∣ ∫ 0 L H d L ′ Q ( L ′ , Ω ) P [ Ω , L ′ − L ] + I 1 ( L = L H , Ω ) P ( Ω , L H − L ) , μ > 0 I^1(L,\Omega)=\frac{1}{|\mu|}\int_0^{L_H}dL'Q(L',\Omega)P[\Omega,L'-L] + I^1(L=L_H, \Omega)P(\Omega,L_H-L), \mu>0 I1(L,Ω)=∣μ∣1∫0LHdL′Q(L′,Ω)P[Ω,L′−L]+I1(L=LH,Ω)P(Ω,LH−L),μ>0
Successive Orders of Scattering Approximation
Similarly, we have
I
2
(
L
,
Ω
)
=
1
∣
μ
∣
∫
0
L
d
L
′
S
1
(
L
′
,
Ω
)
P
(
Ω
,
L
−
L
′
)
,
μ
<
0
I
2
(
L
,
Ω
)
=
1
∣
μ
∣
∫
0
L
d
L
′
S
1
(
L
′
,
Ω
)
P
(
Ω
,
L
′
−
L
)
+
I
2
(
L
=
L
H
,
Ω
)
P
(
Ω
,
L
H
−
L
)
,
μ
>
0
\begin{aligned} &I^2(L,\Omega)=\frac{1}{|\mu|}\int_0^LdL'S_1(L',\Omega)P(\Omega,L-L'), \mu<0\\ &I^2(L,\Omega)=\frac{1}{|\mu|}\int_0^LdL'S_1(L',\Omega)P(\Omega,L'-L) + I^2(L=L_H,\Omega)P(\Omega,L_H-L), \mu >0 \end{aligned}
I2(L,Ω)=∣μ∣1∫0LdL′S1(L′,Ω)P(Ω,L−L′),μ<0I2(L,Ω)=∣μ∣1∫0LdL′S1(L′,Ω)P(Ω,L′−L)+I2(L=LH,Ω)P(Ω,LH−L),μ>0
where
S
1
(
L
,
Ω
)
=
1
∣
μ
∣
∫
4
π
d
Ω
′
Γ
(
Ω
′
,
Ω
)
I
1
(
L
,
Ω
′
)
S_1(L,\Omega)=\frac{1}{|\mu|}\int_{4\pi}d\Omega'\Gamma(\Omega',\Omega)I^1(L,\Omega')
S1(L,Ω)=∣μ∣1∫4πdΩ′Γ(Ω′,Ω)I1(L,Ω′)
Then, repeat this process,
I
n
(
L
,
Ω
)
=
1
∣
μ
∣
∫
0
L
d
L
′
S
n
(
L
′
,
Ω
)
P
(
Ω
,
L
−
L
′
)
,
μ
<
0
I
n
(
L
,
Ω
)
=
1
∣
μ
∣
∫
0
L
d
L
′
S
n
(
L
′
,
Ω
)
P
(
Ω
,
L
′
−
L
)
+
I
n
(
L
=
L
H
,
Ω
)
P
(
Ω
,
L
H
−
L
)
,
μ
>
0
\begin{aligned} &I^n(L,\Omega)=\frac{1}{|\mu|}\int_0^LdL'S_n(L',\Omega)P(\Omega,L-L'), \mu<0\\ &I^n(L,\Omega)=\frac{1}{|\mu|}\int_0^LdL'S_n(L',\Omega)P(\Omega,L'-L) + I^n(L=L_H,\Omega)P(\Omega,L_H-L), \mu >0 \end{aligned}
In(L,Ω)=∣μ∣1∫0LdL′Sn(L′,Ω)P(Ω,L−L′),μ<0In(L,Ω)=∣μ∣1∫0LdL′Sn(L′,Ω)P(Ω,L′−L)+In(L=LH,Ω)P(Ω,LH−L),μ>0
The total intensity
I
I
I and sources
S
S
S can be evalurated as
I
(
L
,
Ω
)
=
I
0
(
L
,
Ω
)
+
∑
n
=
1
+
∞
I
n
(
L
,
Ω
)
S
(
L
,
Ω
)
=
∑
n
=
1
+
∞
S
n
(
L
,
Ω
)
\begin{aligned} &I(L,\Omega)=I^0(L,\Omega)+\sum_{n=1}^{+\infin}I^n(L,\Omega)\\ &S(L,\Omega)=\sum_{n=1}^{+\infin}S_n(L,\Omega) \end{aligned}
I(L,Ω)=I0(L,Ω)+n=1∑+∞In(L,Ω)S(L,Ω)=n=1∑+∞Sn(L,Ω)