Figure:
HDRF
Let
Ω
′
\Omega'
Ω′ be the incident solid angle,
Ω
\Omega
Ω is leaving solid angle. Consider the BRDF of a Lamvertian target is
1
π
\frac{1}{\pi}
π1, the BRF is 1. The HDRF of a target is defined as:
R
h
e
m
(
Ω
)
=
Φ
r
Φ
r
l
a
m
=
L
r
L
r
l
a
m
=
∫
2
π
−
f
r
(
Ω
′
,
Ω
)
d
E
′
∫
2
π
−
1
π
d
E
′
=
∫
2
π
−
f
r
(
Ω
′
,
Ω
)
∣
μ
∣
I
′
d
Ω
′
1
π
∫
2
π
−
I
′
∣
μ
′
∣
d
Ω
′
=
I
1
π
∫
2
π
−
I
′
∣
μ
′
∣
d
Ω
′
,
μ
>
0.
\begin{aligned} R^{hem}(\Omega)&=\frac{\Phi_r}{\Phi_r^{lam}}=\frac{L_r}{L_r^{lam}}\\&=\frac{\int_{2\pi-}f_r(\Omega',\Omega)dE'}{\int_{2\pi-}\frac{1}{\pi}dE'}=\frac{\int_{2\pi-}f_r(\Omega',\Omega)|\mu| I'd\Omega'}{\frac{1}{\pi}\int_{2\pi-}I'|\mu'| d\Omega'}\\ &= \frac{I}{\frac{1}{\pi}\int_{2\pi-}I'|\mu'| d\Omega'}, \ \ \mu>0. \end{aligned}
Rhem(Ω)=ΦrlamΦr=LrlamLr=∫2π−π1dE′∫2π−fr(Ω′,Ω)dE′=π1∫2π−I′∣μ′∣dΩ′∫2π−fr(Ω′,Ω)∣μ∣I′dΩ′=π1∫2π−I′∣μ′∣dΩ′I, μ>0.
This is equivelent to:
H
D
R
F
=
<
I
(
Ω
)
>
0
1
π
∫
2
π
−
<
I
(
Ω
′
)
>
0
∣
Ω
′
⋅
n
1
∣
d
Ω
′
HDRF=\frac{<I(\Omega)>_0}{\frac{1}{\pi}\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n_1|d\Omega'}
HDRF=π1∫2π−<I(Ω′)>0∣Ω′⋅n1∣dΩ′<I(Ω)>0
Here, n 1 n_1 n1 is the outward normal, < ⋅ > <\cdot> <⋅> denotes mean over upper surface δ V t \delta V_t δVt , and we will ignore this notion for a simplification in remaining part of the blog. HDRF depends on atmosphere conditions. HDRF is the ratio of real radiance to the radiance reflected from a lambertian target of canopy upper surface .
HDRF has no unit.
BRF
If no atmosphere, *i.e.,*incident solar radiation at upper canopy boundary
δ
V
t
\delta V_t
δVt is a parallel beam of light, the HDRF become BRF:
B
R
F
=
I
(
Ω
)
1
π
I
(
Ω
′
)
∣
Ω
′
⋅
n
1
∣
=
I
(
Ω
)
I
L
a
m
BRF=\frac{I(\Omega)}{\frac{1}{\pi}I(\Omega')|\Omega'\cdot n_1|}=\frac{I(\Omega)}{I_{Lam}}
BRF=π1I(Ω′)∣Ω′⋅n1∣I(Ω)=ILamI(Ω)
Here,
I
L
a
m
I_{Lam}
ILam is the radiance over upper surface of the canopy from a Lambertian target under the same illumination.
BRF does not depend on atmosphere conditions, only varies with Ω \Omega Ω and Ω ′ \Omega' Ω′.
BRF has no unit.
BRDF
BRDF describes the scattering of a parallel beam of incident radiation from one direction into another direction. However, the denominator of BRDF is the incident flux, not the radiance.
B
R
D
F
=
I
(
Ω
)
∫
2
π
+
I
L
a
m
∣
μ
∣
d
Ω
=
I
(
Ω
)
I
L
a
m
π
=
I
(
Ω
)
E
L
a
m
BRDF=\frac{I(\Omega)}{\int_{2\pi+}I_{Lam}|\mu| d\Omega}=\frac{I(\Omega)}{I_{Lam}\pi}=\frac{I(\Omega)}{E_{Lam}}
BRDF=∫2π+ILam∣μ∣dΩI(Ω)=ILamπI(Ω)=ELamI(Ω)
From the second equality, we could get that
π
⋅
B
R
D
F
=
B
R
F
\pi \cdot BRDF=BRF
π⋅BRDF=BRF.
BRDF has unit s r − 1 sr^{-1} sr−1.
BHR
The BHR is defined as mean irradiance exitance to incident irradiance:
A
=
∫
2
π
+
I
(
Ω
)
∣
μ
∣
d
Ω
∫
2
π
−
I
(
Ω
′
)
∣
μ
′
∣
d
Ω
′
A=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{\int_{2\pi-}I(\Omega')|\mu'|d\Omega'}
A=∫2π−I(Ω′)∣μ′∣dΩ′∫2π+I(Ω)∣μ∣dΩ
BHR has no unit.
DHR
If no atomophere, BHR become DHR:
D
H
R
=
∫
2
π
+
I
(
Ω
)
∣
μ
∣
d
Ω
I
L
a
m
∣
μ
′
∣
DHR=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{I_{Lam}|\mu'|}
DHR=ILam∣μ′∣∫2π+I(Ω)∣μ∣dΩ
DHR has no unit.
For Lambertian Surface and no atmosphere
HDRF becomes:
H
D
R
F
=
<
I
(
Ω
)
>
0
1
π
∫
2
π
−
<
I
(
Ω
′
)
>
0
∣
Ω
′
⋅
n
1
∣
d
Ω
′
=
π
I
M
HDRF=\frac{<I(\Omega)>_0}{\frac{1}{\pi}\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n_1|d\Omega'}=\frac{\pi I}{M}
HDRF=π1∫2π−<I(Ω′)>0∣Ω′⋅n1∣dΩ′<I(Ω)>0=MπI
DHR becomes
D
H
R
=
∫
2
π
+
I
(
Ω
)
∣
μ
∣
d
Ω
I
L
a
m
∣
μ
′
∣
=
π
I
M
DHR=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{I_{Lam}|\mu'|}=\frac{\pi I}{M}
DHR=ILam∣μ′∣∫2π+I(Ω)∣μ∣dΩ=MπI
BHR becomes
A
=
I
∫
2
π
+
∣
μ
∣
d
Ω
∫
2
π
−
I
(
Ω
′
)
∣
μ
′
∣
d
Ω
′
=
I
π
M
A=\frac{I\int_{2\pi+}|\mu|d\Omega}{\int_{2\pi-}I(\Omega')|\mu'|d\Omega'}=\frac{I\pi}{M}
A=∫2π−I(Ω′)∣μ′∣dΩ′I∫2π+∣μ∣dΩ=MIπ
BRF becomes:
B
R
F
=
I
(
Ω
)
1
π
I
(
Ω
′
)
∣
Ω
′
⋅
n
1
∣
=
π
I
M
BRF=\frac{I(\Omega)}{\frac{1}{\pi}I(\Omega')|\Omega'\cdot n_1|}=\frac{\pi I}{M }
BRF=π1I(Ω′)∣Ω′⋅n1∣I(Ω)=MπI
So they are the same.