Spark-Mlib &Spark GraphX

本文介绍了如何使用Spark的MLlib库进行RandomForest分类器的sbt打包操作,并探讨了Spark GraphX在处理属性图方面的应用,包括其优化的顶点和边数据类型。此外,还展示了在GraphX中使用聚合消息的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RandomForest(sbt打包)

Find full example code at “examples/src/main/scala/org/apache/spark/examples/ml/RandomForestClassifierExample.scala” in the Spark repo.

  1. 进入spark目录 mycode中, 自定义randomforest文件夹
mkdir -p randomforest/src/main/scala
cd randomforest/src/main/scala
vim RandomForestClassifierExample.scala
  1. 在RandomForestClassifierExample.scala添加以下代码:
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{
   RandomForestClassificationModel, RandomForestClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{
   IndexToString, StringIndexer, VectorIndexer}
// $example off$
import org.apache.spark.sql.SparkSession

object RandomForestClassifierExample {
   
  def main(args: Array[String]): Unit = {
   
    val spark = SparkSession
      .builder
      .appName("RandomForestClassifierExample")
      .getOrCreate()

    // $example on$
    // Load and parse the data file, converting it to a DataFrame.
    val data = spark.read.format("libsvm").load("/home/CCX/software/spark-3.1.1-bin-hadoop2.7/data/mllib/sample_libsvm_data.txt")

    // Index labels, adding metadata to the label column.
    // Fit on whole dataset to include all labels in index.
    val labelIndexer = new StringIndexer()
      .setInputCol("label")
      .setOutputCol("indexedLabel")
	.fit(data)
    // Automatically identify categorical features, and index them.
    // Set maxCategories so features with > 4 distinct values are treated as continuous.
    val featureIndexer = new VectorIndexer()
      .setInputCol("features")
      .setOutputCol("indexedFeatures")
      .setMaxCategories(4)
      .fit(data)

    // Split the data into training and test sets (30% held out for testing).
    val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))

    // Train a RandomForest model.
    val rf = new RandomForestClassifier()
      .setLabelCol("indexedLabel")
      .setFeaturesCol("indexedFeatures")
      .setNumTrees(10)

    // Convert indexed labels back to original labels.
    val labelConverter = new IndexToString()
      .setInputCol("prediction")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值