Redis分布式锁详解
文章目录
一:如何实现互斥能力?
想要实现分布式锁,必须要求 Redis 有「互斥」的能力
我们可以使用 SETNX 命令,这个命令表示SET if not exists
,即如果key不存在,才会设置它的值,否则什么也不做。
两个客户端进程可以执行这个命令,达到互斥,就可以实现一个分布式锁。
客户端 1 申请加锁,加锁成功:
127.0.0.1:6379> SETNX lock 1
(integer) 1 # 客户端1,加锁成功
客户端 2 申请加锁,因为它后到达,加锁失败:
127.0.0.1:6379> SETNX lock 1
(integer) 0 # 客户端2,加锁失败
此时,加锁成功的客户端,就可以去操作「共享资源」
操作完成后,还要及时释放锁,给后来者让出操作共享资源的机会。如何释放锁呢?
也很简单,直接使用 DEL 命令删除这个 key 即可:
127.0.0.1:6379> DEL lock # 释放锁
(integer) 1
二:死锁问题(设置过期时间)
- 程序处理业务逻辑异常,没及时释放锁
- 进程挂了,没机会释放锁
这时,这个客户端就会一直占用这个锁,而其它客户端就「永远」拿不到这把锁了。
为了针对上述的死锁问题:在申请锁时,给这把锁设置一个「租期」。
在 Redis 中实现时,就是给这个 key 设置一个「过期时间」。
这里我们假设,操作共享资源的时间不会超过 10s,那么在加锁时,给这个 key 设置 10s 过期即可:
127.0.0.1:6379> SETNX lock 1 # 加锁
(integer) 1
127.0.0.1:6379> EXPIRE lock 10 # 10s后自动过期
(integer) 1
这样一来,无论客户端是否异常,这个锁都可以在 10s 后被「自动释放」,其它客户端依旧可以拿到锁。
还是有问题。
现在的操作,加锁、设置过期是 2 条命令,有没有可能只执行了第一条,第二条却「来不及」执行的情况发生呢?例如:
- SETNX 执行成功,执行 EXPIRE 时由于网络问题,执行失败
- SETNX 执行成功,Redis 异常宕机,EXPIRE 没有机会执行
- SETNX 执行成功,客户端异常崩溃,EXPIRE 也没有机会执行
总之,这两条命令不能保证是原子操作(一起成功),就有潜在的风险导致过期时间设置失败,依旧发生「死锁」问题
在 Redis 2.6.12 之后,Redis 扩展了 SET 命令的参数,用这一条命令就可以了:
# 一条命令保证原子性执行
127.0.0.1:6379> SET lock 1 EX 10 NX
OK
然而还有严重的问题:
- 客户端 1 加锁成功,开始操作共享资源
- 客户端 1 操作共享资源的时间,「超过」了锁的过期时间,锁被「自动释放」
- 客户端 2 加锁成功,开始操作共享资源
- 客户端 1 操作共享资源完成,释放锁(但释放的是客户端 2 的锁)
看到了么,这里存在两个严重的问题:
- 锁过期:客户端 1 操作共享资源耗时太久,导致锁被自动释放,之后被客户端 2 持有
- 释放别人的锁:客户端 1 操作共享资源完成后,却又释放了客户端 2 的锁
三:锁被别人释放了怎么办(lua -> uuid)
客户端在加锁时,设置一个只有自己知道的「唯一标识」进去。
例如,可以是自己的线程 ID,也可以是一个 UUID(随机且唯一),这里我们以 UUID 举例
# 锁的VALUE设置为UUID
127.0.0.1:6379> SET lock $uuid EX 20 NX
OK
这里假设 20s 操作共享时间完全足够,先不考虑锁自动过期的问题。
之后,在释放锁时,要先判断这把锁是否还归自己持有,伪代码可以这么写:
# 锁是自己的,才释放
if redis.get("lock") $uuid:
redis.del("lock")
这里释放锁使用的是 GET + DEL
两条命令,这时,又会遇到我们前面讲的原子性问题了。
- 客户端 1 执行 GET,判断锁是自己的
- 客户端 2 执行了 SET 命令,强制获取到锁(虽然发生概率比较低,但我们需要严谨地考虑锁的安全性模型)
- 客户端 1 执行 DEL,却释放了客户端 2 的锁
由此可见,这两个命令还是必须要原子执行才行。
怎样原子执行呢?Lua 脚本。我们可以把这个逻辑,写成 Lua 脚本,让 Redis 来执行。
因为 Redis 处理每一个请求是「单线程」执行的,在执行一个 Lua 脚本时,其它请求必须等待,直到这个 Lua 脚本处理完成
安全释放锁的 Lua 脚本如下:
// 判断锁是自己的,才释放
if redis.call("GET",KEYS[1]) ARGV[1]
then
return redis.call("DEL",KEYS[1])
else
return 0
end
好了,这样一路优化,整个的加锁、解锁的流程就更「严谨」了。
这里我们先小结一下,基于 Redis 实现的分布式锁,一个严谨的的流程如下:
- 加锁:
SET lock_key $unique_id EX $expire_time NX
- 操作共享资源
- 释放锁:Lua 脚本,先 GET 判断锁是否归属自己,再 DEL 释放锁
四:锁的过期时间不好评估怎么办?(Redission)
前面我们提到,锁的过期时间如果评估不好,这个锁就会有「提前」过期的风险。
当时给的妥协方案是,尽量「冗余」过期时间,降低锁提前过期的概率。
加锁时,先设置一个过期时间,然后我们开启一个「守护线程」,定时去检测这个锁的失效时间,如果锁快要过期了,操作共享资源还未完成,那么就自动对锁进行「续期」,重新设置过期时间
如果你是 Java 技术栈,幸运的是,已经有一个库把这些工作都封装好了:Redisson。
Redisson采用了「自动续期」的方案来避免锁过期,这个守护线程我们一般也把它叫做「看门狗」线程。
这个 SDK 提供的 API 非常友好,它可以像操作本地锁的方式,操作分布式锁。如果你是 Java 技术栈,可以直接把它用起来。
五:集群中的分布式锁(RedLock)
之前分析的场景都是,锁在「单个」Redis 实例中可能产生的问题,并没有涉及到 Redis 的部署架构细节。
而我们在使用 Redis 时,一般会采用主从集群 + 哨兵的模式部署
这样做的好处在于,当主库异常宕机时,哨兵可以实现「故障自动切换」,把从库提升为主库,继续提供服务,以此保证可用性。
那当「主从发生切换」时,这个分布锁会依旧安全吗?
试想这样的场景:
- 客户端 1 在主库上执行 SET 命令,加锁成功
- 此时,主库异常宕机,SET 命令还未同步到从库上(主从复制是异步的)
- 从库被哨兵提升为新主库,这个锁在新的主库上,丢失了!
为此ÿ