算法训练 2的次幂表示

问题描述

  任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
  将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
  现在约定幂次用括号来表示,即a^b表示为a(b)
  此时,137可表示为:2(7)+2(3)+2(0)
  进一步:7=2^2+2+2^0 (2^1用2表示)
  3=2+2^0
  所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
  又如:1315=2^10+2^8+2^5+2+1
  所以1315最后可表示为:
  2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

输入格式

  正整数(1<=n<=20000)

输出格式

  符合约定的n的0,2表示(在表示中不能有空格)

样例输入

137

样例输出

2(2(2)+2+2(0))+2(2+2(0))+2(0)

样例输入

1315

样例输出

2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

提示

  用递归实现会比较简单,可以一边递归一边输出

#include<bits/stdc++.h>
using namespace std;

void deal(int n){
    if(n>2){
        int a=(int)log2(n);
        int b=n-pow(2,a);
        if(a==1)cout<<2;
        else{
            cout<<"2(";
            if(a>2){
                deal(a);
            }
            else cout<<a;
            cout<<")";
        }
        if(b){
            cout<<"+";
            deal(b);
        }
        else return;
    }
    else if(n==1){
        cout<<"2(0)";
    }
    else cout<<n;
}
int main()
{
    int n;
    cin>>n;
    deal(n);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值