问题描述
任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
现在约定幂次用括号来表示,即a^b表示为a(b)
此时,137可表示为:2(7)+2(3)+2(0)
进一步:7=2^2+2+2^0 (2^1用2表示)
3=2+2^0
所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10+2^8+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
正整数(1<=n<=20000)
输出格式
符合约定的n的0,2表示(在表示中不能有空格)
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
1315
样例输出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
用递归实现会比较简单,可以一边递归一边输出
#include<bits/stdc++.h>
using namespace std;
void deal(int n){
if(n>2){
int a=(int)log2(n);
int b=n-pow(2,a);
if(a==1)cout<<2;
else{
cout<<"2(";
if(a>2){
deal(a);
}
else cout<<a;
cout<<")";
}
if(b){
cout<<"+";
deal(b);
}
else return;
}
else if(n==1){
cout<<"2(0)";
}
else cout<<n;
}
int main()
{
int n;
cin>>n;
deal(n);
return 0;
}