想必你在短视频APP中都见过各种实时的脸部特效。这些往往都是用到 人脸识别+图像处理 实现的。这方面,Python也很擅长。今天我们就分享一种利用Python获取摄像头图像,并加上墨镜烟斗特效的案例。
实现流程
-
从摄像头获取视频流,并转换为一帧一帧的图像,然后将图像信息传递给opencv这个工具库处理,返回灰度图像(就像你使用本地静态图片一样)
-
程序启动后,根据监听器信息,使用一个while循环,不断的加载视频图像,然后返回给opencv工具呈现图像信息。
-
创建一个键盘事件监听,按下"d"键,则开始执行面部匹配,并进行面具加载(这个过程是动态的,你可以随时移动)。
-
面部匹配使用Dlib中的人脸检测算法来查看是否有人脸存在。如果有,它将为每个人脸创建一个结束位置,眼镜和烟卷会移动到那里结束。
-
然后我们需要缩放和旋转我们的眼镜以适合每个人的脸。我们将使用从Dlib的68点模型返回的点集来找到眼睛和嘴巴的中心,并为它们之间的空间旋转。
-
在我们实时获取眼镜和烟卷的最终位置后,眼镜和烟卷从屏幕顶部进入,开始匹配你的眼镜和嘴巴。
-
假如没有人脸,程序会直接返回你的视频信息,不会有面具移动的效果。
-
默认一个周期是4秒钟。然后你可以通过"d"键再次检测。
-
程序退出使用"q"键。
这里我将这个功能抽象成一个面具加载服务,请跟随我的代码一窥究竟吧。
很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:609616831
首先导入对应的工具包
from time import sleep
import cv2
import numpy as np
from PIL import Image
from imutils import face_utils, resize
try:
from dlib import get_frontal_face_detector, shape_predictor
except ImportError:
raise
创建面具加载服务类DynamicStreamMaskService
及其对应的初始化属性:
class DynamicStreamMaskService(object):
"""
动态黏贴面具服务
"""
def __init__(self, saved=False):
self.saved = saved # 是否保存图片
self.listener = True # 启动参数
self.vide