前言
首先先简单介绍下两个系列的模型:
DeepSeek-R1是由深度求索公司推出的首款推理模型,该模型在数学、代码和推理任务上的表现优异。深度求索不仅开源了DeepSeek-R1模型,还发布了从DeepSeek-R1基于Llama和Qwen蒸馏而来的六个密集模型,在各项基准测试中均表现出色。本文以蒸馏模型DeepSeek-R1-Distill-Qwen-7B为例,为您介绍如何微调该系列模型。
Qwen3是阿里云通义千问团队于2025年4月29日发布的最新大型语言模型系列,包含2个MoE模型和6个Dense模型。其基于广泛的训练,在推理、指令跟随、Agent 能力和多语言支持方面取得了突破性的进展。PAI-Model Gallery已接入全部8个尺寸模型,以及其对应的Base模型、FP8模型,总计22个模型。本文为您介绍如何在Model Gallery部署评测该系列模型。
刚好最近在做一个推理训练任务,现在有现成的训练集,推理模型这么强的情况下,怎么把之前传统对话大模型+指令微调训练模式转变成推理大模型+指令微调任务?
后训练广义可能范围比较大,包括微调、强化学习等。 可能我们构造强化学习数据集或者思维链数据集的成本比较高的,所以今天咱们就聊一聊怎么偷懒地将把之前的指令数据集或者指令微调的工作推演到推理大模型训练上呢?有没有比较省事或者比较规范的做法呢?
方法1:通过推理大模型将指令数据集蒸馏为推理数据
通过能力比较强的推理大模型底座将之前指令数据集蒸馏为思维链数据集,然后进行筛选过滤。
具体做法我们可以参考刘聪大佬开源的Chinese-DeepSeek-R1-Distill-data-110k,大致流程是调用企业版满血R1 API,然后数据生成结果进行了二次校验,并保留了评价分数:
- 针对Math和Exam数据,先利用Math-Verify进行校对,无法规则抽取结果的数据,再利用Qwen2.5-72B-Instruct模型进行打分,正确为10分,错误为0分。
- 针对其他数据,直接利用Qwen2.5-72B-Instruct模型从无害性、有用性、正确性/完整性三个角度进行打分,分值范围为0-10分。
方法2:使用COT数据集构造推理大模型训练数据
下面以一个推理数据集为例,
medical-o1-reasoning-SFT医学推理数据集,该数据集基于医学可验证问题和 LLM 验证器构建,这个数据集构造过程和方法1提到的差不多。方法1强调如何通过推理大模型蒸馏指令数据集,方法2强调如何通过已有COT构造推理数据集
以下面模板为例:
train_prompt_style = """Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
### Instruction:
You are a medical expert with advanced knowledge in clinical reasoning, diagnostics, and treatment planning.
Please answer the following medical question.
### Question:
{}
### Response:
<think>
{}
</think>
{}"""
有了模板下面我们直接通过占位符填充COT字段即可
EOS_TOKEN = tokenizer.eos_token# Must add EOS_TOKEN
def formatting_prompts_func(examples):
inputs = examples["Question"]
cots = examples["Complex_CoT"]
outputs = examples["Response"]
texts = []
for input, cot, output in zip(inputs, cots, outputs):
text = train_prompt_style.format(input, cot, output) + EOS_TOKEN
texts.append(text)
return {
"text": texts,
}
方法3:直接使用指令数据集微调推理大模型
那么还有一种方式就是,我们是不是也可以直接通过比较"素"的指令数据集训练R1类似模型呢,答案是可以!
这里“素”指的是只有instruction/input/output,没有推理思维链类似字段
笔者实测过, 这样微调出来的效果是丢失了思考过程,但是效果发现是没问题,设置32B推理模型超过了72B对话模型。
关于DeepSeek-R1微调,LLaMA Factory有些讨论或者踩坑,我下面直接贴了链接,有兴趣大家可以看下:
- LLaMA Factory:微调DeepSeek-R1-Distill-Qwen-7B模型实现新闻标题分类器
https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b
- deepseek r1微调 #7027
https://github.com/hiyouga/LLaMA-Factory/issues/7027
总结
针对下游任务,如果我们不想要思考过程,可以直接采用第三种方法,这种微调简单粗暴,效果也比传统同参数对话模型好一些。如果想要思考过程,可以参考方法1和方法2来准备数据,然后采用微调的方式进行训练即可。
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。