1 简介
一些比较熟悉pandas
的朋友应该经常会使用query()
、eval()
、pipe()
、assign()
等pandas
的常用方法(相关知识详见我的pandas
专题教程https://www.cnblogs.com/feffery/tag/pandas/
),书写可读性很高的**「链式」**数据分析处理代码,从而更加丝滑流畅地组织代码逻辑。
但在原生Python
中并没有提供类似shell
中的管道操作符|
、R
中的管道操作符%>%
等语法,也没有针对列表等数组结构的可进行链式书写的快捷方法,譬如javascript
中数组的map()
、filter()
、some()
、every()
等。
正所谓“标准库不够,三方库来凑”,Python
原生对链式写法支持不到位没关系,我们可以使用一些简单方便且轻量的第三方库来协助我们在Python
代码中大面积实现链式写法,今天的文章中我就将带大家一起学习相关的知识技巧~
2 在Python中配合pipe灵活使用链式写法
我们将使用到pipe
这个第三方库,它不仅内置了很多实用的**「管道操作函数」,还提供了将常规函数快捷「转换」**为管道操作函数的方法,使用pip install pipe
对其进行安装即可。
pipe
的用法非常方便,类似shell
中的管道操作:以你的数组变量为起点,使用操作符|
衔接pipe
内置的各个常见管道操作函数,组装起自己所需的计算步骤即可,譬如,我们筛选输入数组中为偶数的,再求平方,就可以写作:
import pipe
list(
range(10) |
pipe.filter(lambda x: x % 2 == 0) |
pipe.select(lambda x: x ** 2)
)
因为pipe
搭建的管道默认都是惰性运算的,直接产生的结果是生成器类型,所以上面的例子中我们最外层套上了list()
来取得实际计算结果,更优雅的方式是配合pipe.Pipe()
,将list()
也改造为管道操作函数:
from pipe import Pipe
(
range(10) |
pipe.filter(lambda x: x % 2 == 0) |
pipe.select(lambda x: x ** 2) |
Pipe(list)
)
在上面的简单例子中我们使用到的filter()
、select()
等就是pipe
中常见的管道操作函数,事实上pipe
中的管道操作函数相当的丰富,下面我们来展示其中一些常用的:
2.1 pipe中常用的管道操作函数
2.1.1 使用traverse()展平嵌套数组
如果你想要将任意嵌套数组结构展平,可以使用traverse()
:
(
[1, [2, 3, [4, 5]], 6, [7, 8, [9, [10, 11]]]] |
pipe.traverse |
Pipe(list)
)
2.1.2 使用dedup()进行顺序去重
如果我们需要对包含若干重复值的数组进行去重,且希望保留原始数据的顺序,则可以使用dedup()
,其还支持key
参数,类似sorted()
中的同名参数,实现自定义去重规则:
(
[-1, 0, 0, 0, 1, 2, 3] |
pipe.dedup |
Pipe(list)
)
(
[-1, 0, 0, 0, 1, 2, 3] |
# 基于每个元素的绝对值进行去重
pipe.dedup(key=abs) |
Pipe(list)
)
2.1.3 使用filter()进行值过滤
我们最开始的例子中使用过它,用法就是基于传入的lambda
函数对每个元素进行条件判断,并保留结果为True
的,与javascript
中的filter()
方法非常相似:
(
[1, 4, 3, 2, 5, 6, 8] |
# 保留大于5的元素
pipe.filter(lambda x: x > 5) |
Pipe(list)
)
2.1.4 使用groupby()进行分组运算
这个函数非常实用,其功能相当于管道操作版本的itertools.groupby()
,可以帮助我们基于lambda
函数运算结果对原始输入数组进行分组,通过groupby()
操作后直接得到的结果是分组结果的二元组列表,每个元组的第一个元素是分组标签,第二个元素是分到该组内的各个元素:
基于此,我们可以衔接很多其他管道操作函数,譬如衔接select()
对分组结果进行自定义运算:
2.1.5 使用select()对上一步结果进行自定义遍历运算
这个函数是pipe()
中核心的管道操作函数,通过前面的若干例子也能弄明白,它的功能是基于我们自定义的函数,对上一步的运算结果进行遍历运算。
2.1.6 使用sort()进行排序
相当于内置函数sorted()
的管道操作版本,同样支持key
、reverse
参数:
上述内容足以支撑大部分日常操作需求,你也可以在https://github.com/JulienPalard/Pipe
中查看pipe
的更多功能介绍。
关于Python学习指南
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!
👉Python所有方向的学习路线👈
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python70个实战练手案例&源码👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉Python大厂面试资料👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉Python副业兼职路线&方法👈
学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。
👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取【保证100%免费
】
