本来做的实验是:inception-resnet-v2模型实现,并且用它来进行推理,但是推理的部分实在是没必要做笔记。就是《inference汇总》稍微改了一点点而已。这里就只把inception-resnet-v2模型的实现列出来了。完整的inference的代码见:D:\pythonCodes\深度学习实验\4.1_经典分类网络\7:GoogLeNet v4\inference_inception_resnet_v2
在torchvision中,是没有inception-v4的实现的。这里找的是:https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/inceptionresnetv2.py
并下载了他提供的预训练模型参数。
代码:
from __future__ import print_function, division, absolute_import
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import os
import sys
__all__ = ['InceptionResNetV2', 'inceptionresnetv2']
pretrained_settings = {
'inceptionresnetv2': {
'imagenet': {
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/inceptionresnetv2-520b38e4.pth',
'input_space': 'RGB',
'input_size': [3, 299, 299],
'input_range': [0, 1],
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'num_classes': 1000
},
'imagenet+background': {
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/inceptionresnetv2-520b38e4.pth',
'input_space': 'RGB',
'input_size': [3, 299, 299],
'input_range': [0, 1],
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'num_classes': 1001
}
}
}
class BasicConv2d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_planes, out_planes,
kernel_size=kernel_size, stride=stride,
padding=padding, bias=False) # verify bias false
self.bn = nn.BatchNorm2d(out_planes,
eps=0.001, # value found in tensorflow
momentum=0.1, # default pytorch value
affine=True)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
# 标准Inception module
class Mixed_5b(nn.Module):
def __init__(self):
super(Mixed_5b, self).__init__()
# branch0: 1*1
self.branch0 = BasicConv2d(192, 96, kernel_size=1, stride=1)
# branch1: 1*1, 5*5
self.branch1 = nn.Sequential(
BasicConv2d(192, 48, kernel_size=1, stride=1),
BasicConv2d(48, 64, kernel_size=5, stride=1, padding=2)
)
# branch2: 1*1, 3*3, 3*3
self.branch2 = nn.Sequential(
Bas