Microsoft Wins ImageNet 2015 through Feedforward LSTM without Gates

Microsoft Research dominated the ImageNet 2015 contest with a deep neural network of 150 layers [1]. Congrats to Kaiming He & Xiangyu Zhang & Shaoqing Ren & Jian Sun on the great results [2]!

Their CNN layers compute G(F(x)+x), which is essentially a feedforward Long Short-Term Memory(LSTM) [3] without gates!

Their net is similar to the very deep Highway Networks [4] (with hundreds of layers), which are feedforward LSTMs with forget gates (= gated recurrent units) [5].

The authors mention the vanishing gradient problem, but do not mention my very first student Sepp Hochreiter (now professor) who identified and analyzed this fundamental deep learning problem in 1991, years before anybody else did [6].

Apart from the above, I liked the paper [1] a lot. LSTM concepts keep invading CNN territory [e.g., 7a-e], also through GPU-friendly multi-dimensional LSTMs [8]. 


References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. arxiv:1512.03385

[2] ImageNet Large Scale Visual Recognition Challenge 2015 (ILSVRC2015): Results

[3] S. Hochreiter, J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735-1780, 1997. Based on TR FKI-207-95, TUM (1995). PDFLed to a lot of follow-up work, and is now heavily used by leading IT companies all over the world.

[4] R. K. Srivastava, K. Greff, J. Schmidhuber. Training Very Deep Networks. NIPS 2015;arxiv:1505.00387.

[5] F. A. Gers, J. Schmidhuber, F. Cummins. Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000. PDF.

[6] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, TU Munich, 1991. Advisor: J. Schmidhuber. Overview.

[7a] 2011: First superhuman CNNs 
[7b] 2011: First human-competitive CNNs for handwriting 
[7c] 2012: First CNN to win segmentation contest 
[7d] 2012: First CNN to win contest on object discovery in large images 
[7e] Deep Learning. Scholarpedia, 10(11):32832, 2015

[8] M. Stollenga, W. Byeon, M. Liwicki, J. Schmidhuber. Parallel Multi-Dimensional LSTM, with Application to Fast Biomedical Volumetric Image Segmentation. NIPS 2015; arxiv:1506.07452.


Source: http://people.idsia.ch/~juergen/microsoft-wins-imagenet-through-feedforward-LSTM-without-gates.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值