根据前序遍历和中序遍历重建二叉树(比较简洁易懂的代码分享)

本文介绍了一种使用递归方法,通过给定的前序遍历和中序遍历序列重建二叉树的算法。首先找到根节点,然后递归地构建左右子树,直至所有节点被正确安放。文章提供了完整的Java代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
ps:这个思路是牛客网里面一个大佬的,我觉得很简洁,所以分享给大家。

解题思路
因为是树的结构,一般都是用递归来实现。
用数学归纳法的思想就是,假设最后一步,就是root的左右子树都已经重建好了,那么我只要考虑将root的左右子树安上去即可。
根据前序遍历的性质,第一个元素必然就是root,那么下面的工作就是如何确定root的左右子树的范围。
根据中序遍历的性质,root元素前面都是root的左子树,后面都是root的右子树。那么我们只要找到中序遍历中root的位置,就可以确定好左右子树的范围。
正如上面所说,只需要将确定的左右子树安到root上即可。递归要注意出口,假设最后只有一个元素了,那么就要返回。

package 算法.剑指offer.根据前序遍历和中序遍历创建二叉树.hhh;
import java.util.Arrays;
public class Solution {
    public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
        //数组长度为0的时候要处理
        if(pre.length == 0){
            return null;
        }

        int rootVal = pre[0];

        //数组长度仅为1的时候就要处理
        if(pre.length == 1){
            return new TreeNode(rootVal);
        }

        //我们先找到root所在的位置,确定好前序和中序中左子树和右子树序列的范围
        TreeNode root = new TreeNode(rootVal);
        int rootIndex = 0;
        for(int i=0;i<in.length;i++){
            if(rootVal == in[i]){
                rootIndex = i;
                break;
            }
        }

        //递归,假设root的左右子树都已经构建完毕,那么只要将左右子树安到root左右即可
        //这里注意Arrays.copyOfRange(int[],start,end)是[)的区间
        root.left = reConstructBinaryTree(Arrays.copyOfRange(pre,1,rootIndex+1),Arrays.copyOfRange(in,0,rootIndex));
        root.right = reConstructBinaryTree(Arrays.copyOfRange(pre,rootIndex+1,pre.length),Arrays.copyOfRange(in,rootIndex+1,in.length));


        return root;
    }
    public static void main(String[] args) {
        int [] pre = {1,2,4,7,3,5,6,8};
        int [] mid= {4,7,2,1,5,3,8,6};
        TreeNode root =new Solution().reConstructBinaryTree(pre,mid);
        root.preOrder();

    }

}




 class TreeNode {
      int val;
     TreeNode left;
      TreeNode right;
      TreeNode(int x) { val = x; }
      //编写一个前序遍历的方法用于遍历
     public void preOrder(){
         System.out.println(this);
         if(this.left!=null){
             this.left.preOrder();
         }
         if (this.right!=null){
             this.right.preOrder();
         }
     }

     @Override
     public String toString() {
         return "TreeNode{" +
                 "val=" + val +
                 '}';
     }
 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值