前言
之前工作中,有接触到大数据的需求,虽然当时我们体系有专门的大数据部门,但是由于当时我们中台重构,整个体系的开发量巨大,共用一个大数据部门,人手已经忙不过来,没法办,为了赶时间,我自己负责的系统的大数据相关操作,由我们自己承担了。此前对大数据的知识了解的很少,于是晚上回去花时间突击大数据知识,白天就开始上手干,一边学一边做,总算在部门规定的时间,跟系统一起上线了。后来的维护迭代就交给大数据去了,虽然接触大数据的时间不长,但是对我来说,确是很有意思的一段经历,觉得把当时匆匆学的知识点,再仔细回顾回顾,整理下。
01 大数据概述
大数据: 就是对海量数据进行分析处理,得到一些有价值的信息,然后帮助企业做出判断和决策.
处理流程:
-
1:获取数据
-
2:处理数据
-
3:展示结果
02 Hadoop介绍
Hadoop是一个分布式系基础框架,它允许使用简单的编程模型跨大型计算机的大型数据集进行分布式处理.它主要解决两个问题
-
大数据存储问题: HDFS
-
大数据计算问题:MapReduce
2.1 问题一: 大文件怎么存储?
假设一个文件非常非常大,大小为1PB/a.txt, 大到世界上所有的高级计算机都存储不下, 怎么办?
-
为了保存大文件, 需要把文件放在多个机器上
-
文件要分块 block(128M)
-
不同的块放在不同的 HDFS 节点
-
同时为了对外提供统一的访问, 让外部可以像是访问本机一样访问分布式文件系统
-
有一个统一的 HDFS Master
-
它保存整个系统的文件信息
-
所有的文件元数据的修改都从 Master 开始
2. 2 问题二: 大数据怎么计算?
从一个网络日志文件中计算独立 IP, 以及其出现的次数 如果数据量特别大,我们可以将,整个任务拆开, 划分为比较小的任务, 从而进行计算呢。
2.3 问题三: 如何将这些计算任务跑在集群中?
如果能够在不同的节点上并行执行, 更有更大的提升, 如何把这些任务跑在集群中?
- 可以设置一个集群的管理者, 这个地方叫做 Yarn这个集群管理者有一个 Master, 用于接收和分配任务这个集群管理者有多个 Slave, 用于运行任务
2.4 Hadoop 的组成
-
Hadoop分布式文件系统(HDFS) 提供对应用程序数据的高吞吐量访问的分布式文件系统
-
Hadoop Common 其他Hadoop模块所需的Java库和实用程序。这些库提供文件系统和操作系统级抽象,并包含启动Hadoop所需的必要Java文件和脚本
-
Hadoop MapReduce 基于YARN的大型数据集并行处理系统
-
Hadoop YARN 作业调度和集群资源管理的框架
2.5 Hadoop前生今世
-
Hadoop最早起源于Nutch。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。
-
2003年、2004年谷歌发表的两篇论文为该问题提供了可行的解决方案。
——分布式文件系统(GFS),可用于处理海量网页的存储
——分布式计算框架MAPREDUCE,可用于处理海量网页的索引计算问题。
- Nutch的开发人员完成了相应的开源实现HDFS和MAPREDUCE,并从Nutch中剥离成为独立项目HADOOP,到2008年1月,HADOOP成为Apache顶级项目.
狭义上来说,hadoop就是单独指代hadoop这个软件,
HDFS :分布式文件系统
MapReduce : 分布式计算系统
广义上来说,hadoop指代大数据的一个生态圈,包括很多其他的软件
2.6 hadoop的架构模型
1.x的版本架构模型介绍
文件系统核心模块:
NameNode:集群当中的主节点,管理元数据(文件的大小,文件的位置,文件的权限),主要用于管理集群当中的各种数据
secondaryNameNode:主要能用于hadoop当中元数据信息的辅助管理
DataNode:集群当中的从节点,主要用于存储集群当中的各种数据
数据计算核心模块:
JobTracker:接收用户的计算请求任务,并分配任务给从节点
TaskTracker:负责执行主节点JobTracker分配的任务
2.x的版本架构模型介绍
第一种:NameNode与ResourceManager单节点架构模型
文件系统核心模块:
NameNode:集群当中的主节点,主要用于管理集群当中的各种数据
secondaryNameNode:主要能用于hadoop当中元数据信息的辅助管理
DataNode:集群当中的从节点,主要用于存储集群当中的各种数据
数据计算核心模块:
ResourceManager:接收用户的计算请求任务,并负责集群的资源分配
NodeManager:负责执行主节点APPmaster分配的任务
第二种:NameNode单节点与ResourceManager高可用架构模型
文件系统核心模块:
NameNode:集群当中的主节点,主要用于管理集群当中的各种数据
secondaryNameNode:主要能用于hadoop当中元数据信息的辅助管理
DataNode:集群当中的从节点,主要用于存储集群当中的各种数据
数据计算核心模块:
ResourceManager:接收用户的计算请求任务,并负责集群的资源分配,以及计算任务的划分,通过zookeeper实现ResourceManager的高可用
NodeManager:负责执行主节点ResourceManager分配的任务
第三种:NameNode高可用与ResourceManager单节点架构模型
文件系统核心模块:
NameNode:集群当中的主节点,主要用于管理集群当中的各种数据,其中nameNode可以有两个,形成高可用状态
DataNode:集群当中的从节点,主要用于存储集群当中的各种数据
JournalNode:文件系统元数据信息管理
数据计算核心模块:
ResourceManager:接收用户的计算请求任务,并负责集群的资源分配,以及计算任务的划分
NodeManager:负责执行主节点ResourceManager分配的任务
第四种:NameNode与ResourceManager高可用架构模型
文件系统核心模块:
NameNode:集群当中的主节点,主要用于管理集群当中的各种数据,一般都是使用两个,实现HA高可用
JournalNode:元数据信息管理进程,一般都是奇数个
DataNode:从节点,用于数据的存储
数据计算核心模块:
ResourceManager:Yarn平台的主节点,主要用于接收各种任务,通过两个,构建成高可用
NodeManager:Yarn平台的从节点,主要用于处理ResourceManager分配的任务
03 Hadoop 核心介绍
3.1 HDFS
HDFS(Hadoop Distributed File System) 是一个 Apache Software Foundation 项目, 是 Apache Hadoop 项目的一个子项目. Hadoop 非常适于存储大型数据 (比如 TB 和 PB), 其就是使用 HDFS 作为存储系统. HDFS 使用多台计算机存储文件, 并且提供统一的访问接口, 像是访问一个普通文件系统一样使用分布式文件系统. HDFS 对数据文件的访问通过流的方式进行处理, 这意味着通过命令和 MapReduce 程序的方式可以直接使用 HDFS. HDFS 是容错的, 且提供对大数据集的高吞吐量访问.
HDFS 的一个非常重要的特点就是一次写入、多次读取, 该模型降低了对并发控制的要求, 简化了数据聚合性, 支持高吞吐量访问. 而吞吐量是大数据系统的一个非常重要的指标, 吞吐量高意味着能处理的数据量就大.
3.1.1 设计目标
-
通过跨多个廉价计算机集群分布数据和处理来节约成本
-
通过自动维护多个数据副本和在故障发生时来实现可靠性
-
它们为存储和处理超大规模数据提供所需的扩展能力。
3.1.2 HDFS 的历史
-
Doug Cutting 在做 Lucene 的时候, 需要编写一个爬虫服务, 这个爬虫写的并不顺利, 遇到了一些问题, 诸如: 如何存储大规模的数据, 如何保证集群的可伸缩性, 如何动态容错等
-
2013年的时候, Google 发布了三篇论文, 被称作为三驾马车, 其中有一篇叫做 GFS, 是描述了 Google 内部的一个叫做 GFS 的分布式大规模文件系统, 具有强大的可伸缩性和容错性
-
Doug Cutting 后来根据 GFS 的论文, 创造了一个新的文件系统, 叫做 HDFS
3.1.3 HDFS 的架构
-
NameNode 是一个中心服务器, 单一节点(简化系统的设计和实现), 负责管理文件系统的名字空间(NameSpace)以及客户端对文件的访问
-
文件操作, NameNode 是负责文件元数据的操作, DataNode 负责处理文件内容的读写请求, 跟文件内容相关的数据流不经过 NameNode, 只询问它跟哪个 DataNode联系, 否则 NameNode 会成为系统的瓶颈