一.下载libsvm
1.libsvm - 3.22 : https://github.com/cjlin1/libsvm 配套使用MATLAB2013以上,VisualStudio2015以上
2.libsvm - 3.17 : http://download.csdn.net/download/wzh_xwjh/5648969 配套使用MATLAB2012a,VisualStudio2010
注:这里列的两个安装包是分别针对不同的MATLAB版本和编译器版本使用,否则会出现无法编译的错误。
二.安装libsvm
1.使用MATLAB版本的libsvm需要首先安装Visualstudio,安装过程中只需安装VisualC++即可,其他studio可以不用安装;
2.将libsvm解压后保存到MATLAB文件下的toolbox文件夹,然后打开MATLAB:
file - setpath - Add with Subfolders - 选中libsvm文件夹所在路径 - save - close
3. 打开matlab,设置当前路径为C:\Program Files\MATLAB\R2012a\toolbox\libsvm-3.17\matlab, 在command window中输入“mex -setup”,按提示输入y - 1/2/3/... - y
示例:
>> mex -setup
Welcome to mex -setup. This utility will help you set up
a default compiler. For a list of supported compilers, see
http://www.mathworks.com/support/compilers/R2012a/win64.html
Please choose your compiler for building MEX-files:
Would you like mex to locate installed compilers [y]/n? y
Select a compiler:
[1] Microsoft Visual C++ 2010 in g:\VS\
[0] None
Compiler: 1
Please verify your choices:
Compiler: Microsoft Visual C++ 2010
Location: g:\VS\
Are these correct [y]/n? y
***************************************************************************
Warning: MEX-files generated using Microsoft Visual C++ 2010 require
that Microsoft Visual Studio 2010 run-time libraries be
available on the computer they are run on.
If you plan to redistribute your MEX-files to other MATLAB
users, be sure that they have the run-time libraries.
***************************************************************************
Trying to update options file: C:\Users\liuyuchen\AppData\Roaming\MathWorks\MATLAB\R2012a\mexopts.bat
From template: C:\PROGRA~1\MATLAB\R2012a\bin\win64\mexopts\msvc100opts.bat
Done . . .
**************************************************************************
4.在command window中输入“make”,完成编译
三.运行svmtrain与svmpredict
% 载入软件包数据
load heart_scale.mat; %如果不加 .mat 程序默认数据为ASCII格式,出错:Error using load
Number of columns on line 3 of ASCII file C:\Program Files\MATLAB\R2012a\toolbox\libsvm-3.22\heart_scale
must be the same as previous lines.
data = heart_scale_inst;
label = heart_scale_label;
% 选取前200个数据作为训练集合,后70个数据作为测试集合
ind = 200;
traindata = data(1:ind,:);
trainlabel = label(1:ind,:);
testdata = data(ind+1:end,:);
testlabel = label(ind+1:end,:);
% 利用训练集合建立分类模型
model = svmtrain(trainlabel,traindata,'-s 0 -t 2 -c 1.2 -g 2.8');
%参数输入的意义:
% -s svm类型:SVM设置类型(默认0)
% 0 -- C-SVC
% 1 --v-SVC
% 2 – 一类SVM
%3 -- e -SVR
% 4 -- v-SVR
% -t 核函数类型:核函数设置类型(默认2)
% 0 – 线性:u'v
% 1 – 多项式:(r*u'v + coef0)^degree
% 2 – RBF函数:exp(-r|u-v|^2)
% 3 –sigmoid:tanh(r*u'v + coef0)
% -g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)
% -c cost:设置C-SVC,e -SVR和v-SVR的参数(损失函数)(默认1)
% 分类模型model解密
model
Parameters = model.Parameters
Label = model.Label
nr_class = model.nr_class
totalSV = model.totalSV
nSV = model.nSV
% 利用建立的模型看其在训练集合上的分类效果
[ptrain,accuracy,prob_estimates] = svmpredict(trainlabel,traindata,model);
% 预测测试集合标签
[ptest,accuracy_test,prob_estimates_test] = svmpredict(testlabel,testdata,model);
toc;
%%%%结果
.*
optimization finished, #iter = 350
nu = 0.719833
obj = -88.802168, rho = 0.058346
nSV = 197, nBSV = 13
Total nSV = 197
model =
Parameters: [5x1 double]
nr_class: 2
totalSV: 197
rho: 0.0583
Label: [2x1 double]
sv_indices: [197x1 double]
ProbA: []
ProbB: []
nSV: [2x1 double]
sv_coef: [197x1 double]
SVs: [197x13 double]
Parameters =
0
2.0000
3.0000
2.8000
0
Label =
1
-1
nr_class =
2
totalSV =
197
nSV =
89
108
Accuracy = 99.5% (199/200) (classification)
Accuracy = 68.5714% (48/70) (classification)
Elapsed time is 0.013768 seconds.
optimization finished, #iter = 350
nu = 0.719833
obj = -88.802168, rho = 0.058346
nSV = 197, nBSV = 13
Total nSV = 197
model =
Parameters: [5x1 double]
nr_class: 2
totalSV: 197
rho: 0.0583
Label: [2x1 double]
sv_indices: [197x1 double]
ProbA: []
ProbB: []
nSV: [2x1 double]
sv_coef: [197x1 double]
SVs: [197x13 double]
Parameters =
0
2.0000
3.0000
2.8000
0
Label =
1
-1
nr_class =
2
totalSV =
197
nSV =
89
108
Accuracy = 99.5% (199/200) (classification)
Accuracy = 68.5714% (48/70) (classification)
Elapsed time is 0.013768 seconds.