用Python开始机器学习(10:聚类算法之K均值)

我们之前接触的所有机器学习算法都有一个共同特点,那就是分类器会接受2个向量:一个是训练样本的特征向量X,一个是样本实际所属的类型向量Y。由于训练数据必须指定其真实分类结果,因此这种机器学习统称为有监督学习

然而有时候,我们只有训练样本的特征,而对其类型一无所知。这种情况,我们只能让算法尝试在训练数据中寻找其内部的结构,试图将其类别挖掘出来。这种方式叫做无监督学习。由于这种方式通常是将样本中相似的样本聚集在一起,所以又叫聚类算法

下面我们介绍一个最常用的聚类算法:K均值聚类算法(K-Means)。

1、K均值聚类

K-Means算法思想简单,效果却很好,是最有名的聚类算法。聚类算法的步骤如下:

1:初始化K个样本作为初始聚类中心;

2:计算每个样本点到K个中心的距离,选择最近的中心作为其分类,直到所有样本点分类完毕;

3:分别计算K个类中所有样本的质心,作为新的中心点,完成一轮迭代。

通常的迭代结束条件为新的质心与之前的质心偏移值小于一个给定阈值。

下面给一个简单的例子来加深理解。如下图有4个样本点,坐标分别为A(-1,-1),B(1,-1),C(-1,1),D(1,1)。现在要将他们聚成2类,指定A、B作为初始聚类中心(聚类中心A0, B0),指定阈值0.1。K-Means迭代过程如下:


step 1.1:计算各样本距离聚类中心的距离:

样本A:d(A,A0) = 0; d(A,B0) = 2;因此样本A属于A0所在类;

样本B:d(B,A0) = 2; d(B,B0) = 0;因此样本B属于B0所在类;

样本C:d(C,A0) = 2; d(C,B0) = 2.8;;因此样本C属于A0所在类;

样本C:d(D,A0) = 2.8; d(D,B0) = 2;;因此样本C属于B0所在类;

step 1.2:全部样本分类完毕,现在计算A0类(包含样本AC)和B0类(包含样本BD)的新的聚类中心:

A1 = (-1, 0); B1 = (1,0);

step 1.3:计算聚类中心的偏移值是否满足终止条件:

|A1-A0| = |(-1,0)-(-1,-1) | = |(0,1)| = 1 >0.1,因此继续迭代。

此时的状态如下图所示:


step 2.1:计算各样本距离聚类中心的距离:

样本A:d(A,A1) = 1; d(A,B1) = 2.2;因此样本A属于A1所在类;

样本B:d(B,A1) = 2.2; d(B,B1) = 1;因此样本B属于B1所在类;

样本C:d(C,A1) = 1; d(C,B1) = 2.2;;因此样本C属于A1所在类;

样本D:d(D,A1) = 2.2; d(D,B1) = 1;;因此样本C属于B1所在类;

step 2.2:全部样本分类完毕,现在计算A1类(包含样本AC)和B1类(包含样本BD)的新的聚类中心:

A2 = (-1, 0); B2 = (1,0);

step 2.3:计算聚类中心的偏移值是否满足终止条件:

|A2-A1| = |B2-B1| = 0 <0.1,因此迭代终止。

2、测试数据

下面这个测试数据有点类似SNS中的好友关系,假设是10个来自2个不同的圈子的同学的SNS聊天记录。显然,同一个圈子内的同学会有更密切的关系和互动。

数据如下所示,每一行代表一个好友关系。如第一行表示同学0与同学1的亲密程度为9(越高表示联系越密切)。

显然,这个数据中并没有告知我们这10个同学分别属于哪个圈子。因此我们的目标是使用K-Means聚类算法,将他们聚成2类。

0 1 9
0 2 5
0 3 6
0 4 3
1 2 8
......
这个例子设计的很简单。我们使用上一篇文章中提到的关系矩阵,将其可视化出来,会看到如下结果:


这是个上三角矩阵,因为这个数据中认为好友关系是对称的。上图其实很快能发现,0,1,2,3,4用户紧密联系在一起,而5,6,7,8,9组成了另外一个圈子。

下面我们看看K-Means算法能否找出这个答案。

3、代码与分析

K-Means算法的Python代码如下:

# -*- coding: utf-8 -*-
from matplotlib import pyplot
import scipy as sp
import numpy as np
from sklearn import svm
import matplotlib.pyplot as plt
from sklearn.cluster   import KMeans
from scipy import sparse

#数据读入
data = np.loadtxt('2.txt')
x_p = data[:, :2] # 取前2列
y_p = data[:,  2] # 取前2列
x = (sparse.csc_matrix((data[:,2], x_p.T)).astype(float))[:, :].todense()
nUser = x.shape[0]

#可视化矩阵
pyplot.imshow(x, interpolation='nearest')
pyplot.xlabel('用户')
pyplot.ylabel('用户')
pyplot.xticks(range(nUser))
pyplot.yticks(range(nUser))
pyplot.show()

#使用默认的K-Means算法
num_clusters = 2
clf = KMeans(n_clusters=num_clusters,  n_init=1, verbose=1)
clf.fit(x)
print(clf.labels_)

#指定用户0与用户5作为初始化聚类中心
init = np.vstack([ x[0], x[5] ])
clf = KMeans(n_clusters=2, init=init)
clf.fit(x)
print(clf.labels_)
输出结果如下:

Initialization complete
Iteration  0, inertia 581.000
Iteration  1, inertia 417.643
Converged at iteration 1
[0 0 1 1 1 1 1 1 1]

[0 0 0 0 1 1 1 1 1]

可以看到,使用默认的K-Means算法将使用随机的初始值,因此每次执行的结果都不一样。

上面的输出中将0,1用户聚类到一起,效果并不理想。然而,如果我们可以确定用户0与用户5是有很大区别的,就可以指定用户0和用户5作为K-Means聚类算法的初始值。可以看到和我们的预期完全一致,这样效果就非常好了。

由于K-Means毕竟是无监督学习,在很多情况下自然无法与有监督学习的算法进行同样标准的比较。但其不需要监督的特性,广泛应用与社交图谱(如本例)、相似性匹配(如搜索相似的新闻、帖子)等引用场景。


<think>好的,我现在需要帮助用户解决关于Dify循环实现的问题。首先,我需要明确用户的具体需求。他们提到“dify 循环实现”或“dify 如何处理循环”,但Dify本身可能没有直接称为“循环”的功能,所以需要结合现有文档中的信息来推断可能的解决方案。 根据用户提供的引用内容,Dify工作流中有迭代节点[^1]。这可能类似于编程中的循环结构,用于重复执行某个任务。例如,在处理列表数据或需要多次执行同一操作时,迭代节点可以派上用场。我需要详细解释迭代节点的配置和使用步骤,确保用户能够理解如何设置循环次数或遍历数据集。 另外,用户可能对如何处理循环中的错误或性能问题感兴趣。引用[2]提到在Dify中处理PEM文件的问题,这可能涉及在循环中正确处理数据格式,避免错误积累。需要提醒用户在循环中注意错误处理和资源管理,确保每次迭代的稳定性。 引用[3]中的例子展示了如何结合FastAPI和Selenium进行实时监控并生成GIF,这可能涉及循环截取浏览器内容。虽然Dify本身可能不直接控制这类循环,但可以通过外部脚本或定时任务触发工作流,模拟循环执行。这部分需要说明如何将外部循环机制与Dify结合使用。 接下来,我需要组织回答结构。首先介绍迭代节点的基本概念和配置步骤,然后讨论循环中的数据处理和错误处理,最后补充外部触发循环的方法。同时,生成相关问题以帮助用户进一步探索,比如优化循环性能或处理复杂数据结构。 需要确保回答符合格式要求,使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。同时,引用标识要自然地添加到相关段落末尾,如、[^2]、[^3]。 最后,检查是否有遗漏点,比如Dify的其他循环相关功能或用户可能遇到的常见问题,确保回答全面且易于理解。</think>在Dify中处理循环逻辑主要通过**迭代节点**实现,以下是具体实现方式和应用场景的解析: ### 一、Dify循环实现机制 Dify通过**工作流设计器**中的迭代节点处理循环需求,其核心原理类似编程中的`for循环`。迭代节点可遍历以下数据类型: - 数组列表:`["A","B","C"]` - 字典集合:`{"key1":"value1", "key2":"value2"}` - 数值范围:通过`range()`函数生成序列 配置示例: ```python # 模拟迭代节点的数据输入 input_data = { "dataset": [1,2,3,4,5], "process_logic": "item * 2" # 对每个元素执行乘以2的操作 } ``` ### 二、迭代节点的关键配置步骤 1. **数据源绑定**:将数组/字典类型变量连接到迭代节点的输入端口 2. **循环变量命名**:设定当前元素的变量名(默认为`item`) 3. **子流程设计**:在迭代节点内部构建需要重复执行的逻辑模块 4. **结果聚合**:通过`outputs`收集所有迭代结果,支持数组或对象格式 $$ \text{总耗时} = \sum_{i=1}^{n}(单次迭代时间_i) + 系统开销 $$ ### 三、循环中的特殊处理 1. **错误中断控制**: - 启用`continueOnError`参数可跳过失败迭代 - 通过`try-catch`模块包裹敏感操作 2. **并行优化**: ```python # 伪代码示例 Parallel.forEach(dataset, lambda item: process(item)) ``` 3. **结果过滤**: ```python filtered = filter(lambda x: x%2==0, processed_results) ``` ### 四、应用场景案例 1. **批量文件处理**:遍历存储桶中的文件列表进行格式转换 2. **数据清洗**:对数据库查询结果集进行逐条校验 3. **API轮询**:定时循环调用第三方接口直到满足特定条件
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值